A Quick Introduction to Vectorization in MATLAB

Overview

Vectorization is the use of MATLAB's implementation of matrix algebra syntax or array operators to perform calculation without the *explicit* use of loops.

Vectorized expression:	Equivalent Loop:
<pre>x = linspace(0,2*pi); y = sin(x):</pre>	n = 100; dx = 2*pi/(n-1):
Because x is a vector, MATLAB auto-	x(1) = 0; y(1) = sin(x(1)); for i=2.7
same shape. Each element of y is the sine of the corresponding element of x	for $1=2:n$ x(i) = x(i-1) + dx; y(i) = sin(x(i));
sine of the corresponding element of h	end

Advantages

Vectorization is good because

- Vectorization enables writing of code that is compact and idiomatic.
- Compact, idiomatic code is easier to read and debug.
- Vectorized code is faster, even though the same computations are performed.

Matrix Operations are Vectorized

The MATLAB *, +, and - operators adhere (mostly) to the rules of linear algebra. **Examples:**

```
>> x = [1; 2; 3]; y = [5; 1; -2];
>> z = x + y
z =
     6
    3
    1
>> A = [2 -1 3; 4 0 7; 5 9 -6];
>> u = A*x
u =
    9
    25
    5
```

5

9

Scalar addition

You cannot add a scalar to a vector or a matrix, but MATLAB allows the following abuse of the notation of linear algebra.

>> s = 2 s = 2 >> B = A + sВ = 4 1 6 2 7 11 -4 >> v = z + s v = 8 5 3

Array Operators

There are situations where vectorization would be good, but not supported by the rules of linear algebra.

Example: Compute the area of a set of circles, $a = \pi r^2$, where r is a vector of radii. According to the rules of linear algebra, only square matrices can be squared.

To help the programmer, without breaking the rules of linear algebra, MATLAB provides *array* operators. In the case of the square (or any power), the expression $y=x.^2$ creates a vector y of the same shape as x, and each element of y is the square of corresponding element of x.

Vectorized expression:	Equivalent Loop:
a = pi*r.^2;	<pre>for i=1:length(r)</pre>
	end

Operator	Meaning	Vectorized Example	Equivalent Loop
.*	Element-by-element multiplication	z = x.*y	<pre>for i=1:length(x) z(i) = x(i)*y(i); end</pre>
./	Element-by-element division	z = x./y	<pre>for i=1:length(x) z(i) = x(i)/y(i); end</pre>
.^	Raise each element to a power	$z = x.^{(1/3)}$	<pre>for i=1:length(x) z(i) = x(i)^(1/3); end</pre>

Note: There is no need for .+, .- operators.