A Quick Introduction to Vectors and Loops in Matlab

Create Vectors

$\mathrm{x}=1: 5$	x is a row vector containing $1,2,3,4,5$
$\mathrm{y}=\left[\begin{array}{llll}0.273 & 3.05-2.74 .222\end{array}\right]$	y is a row vector
$\mathrm{y}=\left[\begin{array}{lll}0.273 & 3.05-2.74 .222\end{array}\right]^{\prime}$	y is a column vector
$\mathrm{z}=$ linspace $(-1,1)$	z is a row vector with 100 values from -1 to 1

Simple operations on Vectors

After the x vector has been created, then

$\operatorname{xmax}=\max (\mathrm{x})$	xmax contains the element from x with largest posi- tive value
$\mathrm{y}=\operatorname{abs}(\mathrm{x})$	creates a vector y such that $y_{i}=\left\|x_{i}\right\|$
$\mathrm{xmax}=\max (\operatorname{abs}(\mathrm{x}))$	xmax contains the element from x with largest abso- lute value $\mathrm{xbar}=\operatorname{mean}(\mathrm{x})$
$\mathrm{n}=\operatorname{xbar}$ contains the average of the values in x	
$\mathrm{s}=\operatorname{norm}(\mathrm{x})$	n is the number of elements in x
$\mathrm{t}=\operatorname{sum}(\mathrm{x})$	s is the L_{2} norm of elements in $\mathrm{x} . \quad s=\left[\sum_{i=1}^{n} x_{i}^{2}\right]^{1 / 2}$
	t is the sum of the elements in $\mathrm{x} . \quad t=\sum_{i=1}^{n} x_{i}$

Access to Elements in a Vectors

After the x vector has been created, then

$x(3)$	is the third element of x
$x(2)=7.2$	stores 7.2 in the second element of x
$i=3 ; y(i)=x(i+1)$	stores the value of $x(4)$ in $y(3)$.
$i=3 ; y(i)=\operatorname{sqrt}(x(i+1))$	stores the square root of the value of $x(4)$ in $y(3)$

Loops with Vectors

Here is a Matlab function that uses a loop to compute the average of the elements in x

```
function xbar = average(x)
% average Compute the average of the elements in a vector
xsum = 0;
n = length(x)
for i=1:n
    xsum = xsum + x(i);
end
xbar = xsum/n;
```

Note that i, n, xbar, and xsum are all scalar values, i.e. they are equivalent to matrices with one row and one column.

