page 1/1

A Quick Introduction to Vectors and Loops in MATLAB

Create Vectors

х	=	1:5	\mathbf{x} is a row vector containing 1, 2, 3, 4, 5
у	=	[0.273 3.05 -2.7 4.222]	y is a row vector
у	=	[0.273 3.05 -2.7 4.222]'	y is a column vector
z	=	linspace(-1,1)	z is a row vector with 100 values from -1 to 1

Simple operations on Vectors

After the ${\tt x}$ vector has been created, then

xmax = max(x)	xmax contains the element from x with largest positive value
y = abs(x)	creates a vector y such that $y_i = x_i $
<pre>xmax = max(abs(x))</pre>	\mathtt{xmax} contains the element from \mathtt{x} with largest absolute value
xbar = mean(x)	xbar contains the average of the values in x
n = length(x)	${\tt n}$ is the number of elements in ${\tt x}$
s = norm(x)	s is the L_2 norm of elements in x . $s = \left[\sum_{i=1}^n x_i^2\right]^{1/2}$
t = sum(x)	t is the sum of the elements in x . $t = \sum_{i=1}^{n} x_i$

Access to Elements in a Vectors

After the \mathbf{x} vector has been created, then

x(3)	is the third element of \mathbf{x}
x(2) = 7.2	stores 7.2 in the second element of ${\tt x}$
i=3; y(i) = x(i+1)	stores the value of $x(4)$ in $y(3)$.
i=3; y(i) = sqrt(x(i+1))	stores the square root of the value of $x(4)$ in $y(3)$

Loops with Vectors

Here is a MATLAB function that uses a loop to compute the average of the elements in \mathbf{x}

```
function xbar = average(x)
% average Compute the average of the elements in a vector
xsum = 0;
n = length(x)
for i=1:n
    xsum = xsum + x(i);
end
xbar = xsum/n;
```

Note that i, n, xbar, and xsum are all *scalar* values, i.e. they are equivalent to matrices with one row and one column.

©2007, Gerald Recktenwald