Design of the Inlet for an Open Circuit Wind Tunnel for Testing Full Scale Class Eight Trucks

Bhaskar Bhatnagar, Freightliner LLC Gerald Recktenwald, Portland State University gerry@me.pdx.edu

Overview

- Open circuit design
- Boundary layer analysis
- CFD analysis
- Conclusions

Design Strategy

Objectives

- Guarantee no separation
- Obtain uniform velocity profile upstream of vehicle under test

Boundary layer analysis

- Run CFD model with slip BC on walls
- Use Thwaites' method to find $c_f(x)$ and $\theta(x)$
- Goal: $c_f(x) > 0$ for all x

CFD Analysis

- Three dimensional, quarter model.
- Goal: maximum velocity deviation < 1% outside the boundary layer
- Look for secondary flow in corners

Inlet Geometry

Inlet Geometry

$$\frac{y - y_1}{H_s - H_t} = -3\xi^5 + \frac{15}{2}\xi^4 - \xi^3 \qquad \qquad \xi = \frac{x - x_1}{L_c}$$

 $\frac{z - z_1}{W_s - W_t} = -3\xi^5 + \frac{15}{2}\xi^4 - \xi^3$

Design Parameters

Fixed

Dimensions of cross section: H_s , W_s , H_t , W_t Air speed in test section

Variable Length of settling chamber, L_s Length of contraction, L_c Length of test section inlet, L_t Number, location, and porosity of screens

Boundary Layer Analysis

- Preliminary CFD work found no separation
- Bell and Mehta showed that Thwaites' method predicted successful designs of low speed wind tunnels
- Run CFD model with slip BC on walls.
 Velocity along the wall from slip solution is external velocity for Thwaites' method.
- Thwaites' method used to check that boundary layer does not separate. Detailed CFD analysis is still useful.

Given $u_e(s)$, the variation of free stream velocity outside the boundary layer, numerically integrate the momentum equation to get $\theta(s)$, $\delta(s)$, and $c_f(s)$

$$\theta^{2} = \theta_{0}^{2} + \frac{0.45v}{u_{e}^{6}} \int_{s_{0}}^{s} u_{e}^{5}(\zeta) d\zeta$$

Thwaites Method – External Pressure Gradient

Thwaites Method – Wall shear vs. L_{sv}

CFD Model

- Quarter model
- 1.6 × 10⁶ cells
- Highly graded mesh
- MARS convection scheme

• Low Reynolds number k- ε turbulence model

100×100 Mesh in Cross Section

Screen Models

Local pressure drop

$$\Delta p = \frac{1}{2} K_m \rho v_n^2$$

Idelchik model

$$K_m = K_{\text{mesh}} K_{\text{Rn}} (1 - f) + \frac{(1 - f)^2}{f^2}$$

Star-CD model

$$\Delta p = \rho \left(\alpha |\upsilon_n| + \beta \right) \upsilon_n$$
$$\alpha = \frac{K_m}{2} - \frac{\beta}{\upsilon_n} \qquad \beta = 0.01$$

Velocity Profiles development in test section

Single screen in settling chamber

Two screens in settling chamber

$$x_t/L_t = 0$$

$$|V_{\rm max}| = 0.042 U_t$$

$$x_t/L_t = 0.5$$

$$|V_{\rm max}| = 0.022 U_t$$

	· / / / / / / / / / / // // //////////	71111111111111111111111111111111111111	THIMMAN	THUMMIN	THILING STATE	1111111111 - warming																											
11100	111-	1110	lun-	1111	1111													222									12	110 100 100 100	010) 010) 010) 010)	0.0000 0.0000 0.0000 0.0000	Nime Willes Willes Willes		
1	4	- }	1	- j	1	N.	Ì.							-	2	2	1	2	2	2	2		_		-		111	000 1115 1115	0119 0119 0119	11110 11110		ine. The	
2	1	1	1	1	÷i,	i.	i.	ŝ.	ŝ.	ŝ.	5	-		2	2	2	2	4	7	2	2	2			~~		"	<u>m</u>	111		WW	2	
		1	1	1	1	4	5	1	1	1	2	r.	t,	¢,	ł.	e,	1	4	ć	Ċ	e.	-	-			an an	11) 11)	(11) (11)	an titi	 1155	www.	10 m	-
2	1	÷,	1	1	1	4	2	2	2	Ċ.	2	2	Ç,	÷.	č	k - V	4 4 6 4	 	Ĵ	÷	77 11	2	i.			ι.	s.	m	1111	ttist	1		
1	1	1	1	1	1	1	1	2	2	÷	÷	_	-	\$	ŝ	ŝ.	Į.		Å	Ŷ	15	ŝ,	Ċ,			13	H	111	111				-
1	1	1	1	1	1	1	1	1	1	2	-		s	s	\$	ς.	v,	\$. \	X	Ś	N	\$	~	÷	• • •	11	11					Ч
1	1	1	1	1	1	1	1	1	1	1	7	-	7	2	N	~	N	\$	~	8	Ŵ	\$	\$5	~	- 1	• • •	ut.	111		111/111 +++###	mimi Hilbo		-
1	1	1	1	1	1	1	1	1	1	1	7	-	7	2	\sim	5	N	~	1	~	N	N	11	8	~~~	و الراجع	ee e	m	nn 		******		-
1	1	1	1	1	1	1	1	1	1	1	7	7	-	7	2	~	×	~	1	~	1	\$	v	0	-		eet.	at	ш	n na			-
1	1	1	1	-	1	1	1	1	1	-	-	7	-	7	7	>	\sim	~	1	5	1	1	\$	N	~			nt	nn	2076	riilii	h	-
1	1	1	1	1	1	1	1	1	1	1	-	-		-	-+	~	~	~	~	5	~	5	2	~		~		m	nt	11111			-
1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	~	-	~	~	~	1	7	"	N	N	"	N			eat.	atiti			•
_					_		-	-		-																				468700			_

$$x_t/L_t = 1$$

 $|V_{\rm max}| = 0.014 U_t$

Conclusions

- Boundary layer and CFD analysis are complementary
- No separation predicted for $d/L_s < 0.35$ and $L_c/D_{\rm hs} = 0.81$
- Weak secondary flow in corners
- Wind tunnel is operating

The Team

		ļ			Ì	ļ	ļ	ļ	ł	ļ	1	1	1	1						1			ļ							Шq	
1	F 3	Ŧ 3	Ξ	ŤΞ	Ξ	Ŧ 3	F E	Ŧ	Ť	-	-	÷	÷	÷	-			Ē			5		2		<u> </u>			==,			
1	6	7	~	~ ~	1	1	1			: :				-		-	÷		Ξ	2	22		-				 		 		_
~	\sim	~	.`			1	1	1	-									~	~	~		~ `			• •	• • •					
-	-	~	2	2	2	Ì	Ś	Ľ	ć	1	-	_		1			ì	2	2	\sim	2	<u>``</u>	2		1	•••				5000	
	-	·	~	~	~	~	~	~	~		_	_						<u>`</u>					11								
-	×	-	-	-	-	~	~	•	~	-	_			r	٢		1	<u> </u>	<i>``</i>				· ·								
	_	_	_	~	~			~	~	_		-	-	1	1	1	1		1	1	"	· · ·	<i></i>	//							
~	~	~	~	*	*~~	\sim	~	\sim	~	~	~	-	—			~	~ .		~ /	/	//		~ ~	//	~~~	_	~~~~	1110		WWW	<u>'</u> i' –
~	~	\sim	~	\sim	~	~	~	~	~	~	~		_			-	~.	~ _	~~	/	~ ~	~	~ ~	,	~~~		~~^	1111	100	111 111 1	
	`	~	~	`	~	~	~	~	~	~	~		-	-		-	~.		~ _	/	//		~~~	~~					100	WW	
,	,				,							_																m			
	•			•	`	ì	ì	`	ì				-	1	1	1	1	<i>_</i>		1		1	~	///							
,	,	,	,	,	,	,		,				-	-	,	,	,	,	¢ ,	, ,	,			, ,	.,		•		utt	uuu		
-	-	,	,	,	,	,	,	,	-	,	,	-	-			,	ζ.	ς.	• •		ţ	11			51		a d	1313	:1511		
-	-	-	-	-	-	~	-	~		-	-	-		~				`	, ·	•	.\						'	nti	eettilli		
-	~	~	,	-	/	,	-	-	-	-	-	-						~	``	, ,	. \	11				111		-26	mth		
																															_
-	-	-	-	-	-		-	-	-	-	-	-					. ~	`	``	• •	17	11		"	.//	/11	lu	1000	rath.	1111 1	

Extra

100×100 Mesh in cross section

