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Overview

• Fitting a line to data

� Geometric interpretation

� Residuals of the overdetermined system

� The normal equations

• Nonlinear fits via coordinate transformation

• Fitting arbitrary linear combinations of basis functions

� Mathematical formulation

� Solution via normal equations

� Solution via QR factorization

• Polynomial curve fits with the built-in polyfit function

• Multivariate fitting
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Fitting a Line to Data

Given m pairs of data:

(xi, yi), i = 1, . . . , m

Find the coefficients α and β such that

F (x) = αx + β

is a good fit to the data

Questions:

• How do we define good fit?

• How do we compute α and β after a definition of “good fit” is obtained?
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Plausible Fits

Plausible fits are obtained by adjusting the

slope (α) and intercept (β). Here is a

graphical representation of potential fits to a

particular set of data

Which of the lines provides the best fit?
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The Residual

The difference between the given yi value

and the fit function evaluated at xi is

ri = yi − F (xi)

= yi − (αxi + β)

ri is the residual for the data pair (xi, yi).

ri is the vertical distance between the known

data and the fit function. 1 2 3 4 5 6
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Minimizing the Residual

Two criteria for choosing the “best” fit

minimize
X

|ri| or minimize
X

r
2
i

For statistical and computational reasons choose minimization of ρ =
P

r2
i

ρ =

mX
i=1

[yi − (αxi + β)]
2

The best fit is obtained by the values of α and β that minimize ρ.
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Orthogonal Distance Fit

An alternative to minimizing the

residual is to minimize the orthogonal

distance to the line.

Minimizing
P

d2
i is known as the

Orthogonal Distance Regression

problem.

See, e.g., Åke Björk, Numerical

Methods for Least Squares Problems,

1996, SIAM, Philadelphia.

y
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Least Squares Fit (1)

The least squares fit is obtained by choosing the α and β so that

mX
i=1

r
2
i

is a minimum. Let ρ = ‖r‖2
2 to simplify the notation.

Find α and β by minimizing ρ = ρ(α, β). The minimum requires

∂ρ

∂α

˛̨
˛̨
β=constant

= 0

and
∂ρ

∂β

˛̨̨
˛
α=constant

= 0
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Least Squares Fit (2)

Carrying out the differentiation leads to

Sxxα + Sxβ = Sxy (1)

Sxα + mβ = Sy (2)

where

Sxx =

mX
i=1

xixi Sx =

mX
i=1

xi

Sxy =

mX
i=1

xiyi Sy =

mX
i=1

yi

Note: Sxx, Sx, Sxy, and Syy can be directly computed from the given (xi, yi) data.

Thus, Equation (1) and (2) are two equations for the two unknowns, α and β.
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Least Squares Fit (3)

Solving equations (1) and (2) for α and β yields

α =
1

d
(SxSy − mSxy) (3)

β =
1

d
(SxSxy − SxxSy) (4)

with

d = S
2
x − mSxx (5)
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Overdetermined System for a Line Fit (1)

Now, let’s rederive the equations for the fit. This will give us insight into the process or

fitting arbitrary linear combinations of functions.

For any two points we can write

αx1 + β = y1

αx2 + β = y2

or »
x1 1

x2 1

– »
α

β

–
=

»
y1

y2

–

But why just pick two points?
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Overdetermined System for a Line Fit (2)

Writing out the αx + β = y equation for all of the known points (xi, yi),

i = 1, . . . , m gives the overdetermined system.

2
664

x1 1

x2 1
... ...

xm 1

3
775

»
α

β

–
=

2
664

y1

y2
...

ym

3
775 or Ac = y

where

A =

2
664

x1 1

x2 1
... ...

xm 1

3
775 c =

»
α

β

–
y =

2
664

y1

y2
...

ym

3
775

Note: We cannot solve Ac = y with Gaussian elimination. Unless the system is consistent (i.e., unless

y lies in the column space of A) it is impossible to find the c = (α, β)T that exactly satisfies
all m equations. The system is consistent only if all the data points lie along a single line.
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Normal Equations for a Line Fit

Compute ρ = ‖r‖2
2, where r = y − Ac

ρ = ‖r‖2
2 = r

T
r = (y − Ac)

T
(y − Ac)

= y
T
y − (Ac)

T
y − y

T
(Ac) + c

T
A

T
Ac

= y
T
y − 2y

T
Ac + c

T
A

T
Ac.

Minimizing ρ requires
∂ρ

∂c
= −2A

T
y + 2A

T
Ac = 0

or

(A
T
A)c = A

T
b

This is the matrix formulation of equations (1) and (2).
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linefit.m

The linefit function fits a line to a set of data by solving the normal equations.

function [c,R2] = linefit(x,y)
% linefit Least-squares fit of data to y = c(1)*x + c(2)
%
% Synopsis: c = linefit(x,y)
% [c,R2] = linefit(x,y)
%
% Input: x,y = vectors of independent and dependent variables
%
% Output: c = vector of slope, c(1), and intercept, c(2) of least sq. line fit
% R2 = (optional) coefficient of determination; 0 <= R2 <= 1
% R2 close to 1 indicates a strong relationship between y and x
if length(y)~= length(x), error(’x and y are not compatible’); end

x = x(:); y = y(:); % Make sure that x and y are column vectors
A = [x ones(size(x))]; % m-by-n matrix of overdetermined system
c = (A’*A)\(A’*y); % Solve normal equations
if nargout>1
r = y - A*c;
R2 = 1 - (norm(r)/norm(y-mean(y)))^2;

end
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Line Fitting Example

Store data and perform the fit

>> x = [1 2 4 5];
>> y = [1 2 2 3];
>> c = linefit(x,y)
c =

0.4000
0.8000

Evaluate and plot the fit

>> xfit = linspace(min(x),max(x));
>> yfit = c(1)*xfit + c(2)
>> plot(x,y,’o’,xfit,yfit,’-’);
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R2 Statistic (1)

R2 is a measure of how well the fit function follows the trend in the data. 0 ≤ R2 ≤ 1.

Define:

ŷ is the value of the fit function at the

known data points.

For a line fit ŷi = c1xi + c2

ȳ is the average of the y values ȳ =
1

m

X
yi

Then:

R
2
=

X
(ŷi − ȳ)

2

X
(yi − ȳ)

2
= 1 − ‖r‖2

2P
(yi − ȳ)2

When R2 ≈ 1 the fit function follows the trend of the data.

When R2 ≈ 0 the fit is not significantly better than approximating the data by its mean.
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Graphical Interpretation of the R2 Statistic

Consider a line fit to a data set with R2 = 1 − ‖r‖2
2P

(yi − ȳ)2
= 0.934

Vertical distances between given y

data and the least squares line fit.

Vertical lines show contributions to

‖r‖2.
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R2 Statistic: Example Calculation

Consider the variation of the bulk modulus

of Silicon Carbide as a function of

temperature (Cf. Example 9.4)

T (◦C) 20 500 1000 1200 1400 1500

G (GPa) 203 197 191 188 186 184

>> [t,D,labels] = loadColData(’SiC.dat’,6,5);
>> g = D(:,1);
>> [c,R2] = linefit(t,g);
c =

-0.0126
203.3319

R2 =
0.9985

0 500 1000 1500
180

185

190

195

200

205

T   ° C

B
ul

k 
M

od
ul

us
   

 G
Pa

NMM: Least Squares Curve-Fitting page 18



Fitting Transformed Non-linear Functions (1)

• Some nonlinear fit functions y = F (x) can be transformed to an equation of the

form v = αu + β

• Linear least squares fit to a line is performed on the transformed variables.

• Parameters of the nonlinear fit function are obtained by transforming back to the

original variables.

• The linear least squares fit to the transformed equations does not yield the same fit

coefficients as a direct solution to the nonlinear least squares problem involving the

original fit function.

Examples:

y = c1e
c2x −→ ln y = αx + β

y = c1x
c2 −→ ln y = α ln x + β

y = c1xec2x −→ ln(y/x) = αx + β
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Fitting Transformed Non-linear Functions (2)

Consider

y = c1e
c2x

(6)

Taking the logarithm of both sides yields

ln y = ln c1 + c2x

Introducing the variables

v = ln y b = ln c1 a = c2

transforms equation (6) to

v = ax + b
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Fitting Transformed Non-linear Functions (3)

The preceding steps are equivalent to graphically obtaining c1 and c2 by plotting the data

on semilog paper.

y = c1e
c2x ln y = c2x + ln c1
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Fitting Transformed Non-linear Functions (4)

Consider y = c1x
c2. Taking the logarithm of both sides yields

ln y = ln c1 + c2 ln x (7)

Introduce the transformed variables

v = ln y u = ln x b = ln c1 a = c2

and equation (7) can be written

v = au + b
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Fitting Transformed Non-linear Functions (5)

The preceding steps are equivalent to graphically obtaining c1 and c2 by plotting the data

on log-log paper.

y = c1x
c2 ln y = c2 ln x + ln c1
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Example: Fitting Data to y = c1xec2x

Consider y = c1xec2x. The transformation

v = ln

„
y

x

«
a = c2 b = ln c1

results in the linear equation

v = ax + b
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Fitting Transformed Non-linear Functions (6)

The preceding steps are equivalent to graphically obtaining c1 and c2 by plotting the data

on semilog paper.

y = c1xec2x ln(y/x) = c2x + ln c1
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xexpfit.m

The xexpfit function uses a linearizing transformation to fit y = c1xec2x to data.

function c = xexpfit(x,y)
% xexpfit Least squares fit of data to y = c(1)*x*exp(c(2)*x)
%
% Synopsis: c = xexpfit(x,y)
%
% Input: x,y = vectors of independent and dependent variable values
%
% Output: c = vector of coefficients of y = c(1)*x*exp(c(2)*x)

z = log(y./x); % Natural log of element-by-element division
c = linefit(x,z); % Fit is performed by linefit
c = [exp(c(2)); c(1)]; % Extract parameters from transformation
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Example: Fit Synthetic Data

Fit y = c1xec2x to synthetic data. See

demoXexp

>> % Synthetic data with noise, avoid x=0
>> x0 = 0.01;
>> noise = 0.05;
>> x = linspace(x0,2,200);
>> y = 5*x.*exp(-3*x);
>> yn = y + noise*(rand(size(x))-0.5);
>> % Guarantee yn>0 for log(yn)
>> yn = abs(yn);
>> c = xexpfit(x,yn);
c =

5.7701
-3.2330
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Summary of Transformations

• Transform (x, y) data as needed

• Use linefit

• Transform results of linefit back

>> x = ... % original data
>> y = ...
>> u = ... % transform the data
>> v = ...
>> a = linefit(u,v)
>> c = ... % transform the coefficients
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Summary of Line Fitting (1)

1. m data pairs are given: (xi, yi), i = 1, . . . , m.

2. The fit function y = F (x) = c1x + c2 has n = 2 basis functions f1(x) = x and

f2(x) = 1.

3. Evaluating the fit function for each of the m data points gives an overdetermined

system of equations Ac = y where c = [c1, c2]
T , y = [y1, y2, . . . , ym]T , and

A =

2
664

f1(x1) f2(x1)

f1(x2) f2(x2)
... ...

f1(xm) f2(xm)

3
775 =

2
664

x1 1

x2 1
... ...

xm 1

3
775 .
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Summary of Line Fitting (2)

4. The least-squares principle defines the best fit as the values of c1 and c2 that minimize

ρ(c1, c2) = ‖y − F (x)‖2
2 = ‖y − Ac‖2

2.

5. Minimizing of ρ(c1, c2) leads to the normal equations

(A
T
A)c = A

T
y,

6. Solving the normal equations gives the slope c1 and intercept c2 of the best fit line.
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Fitting Linear Combinations of Functions

• Definition of fit function and basis functions

• Formulation of the overdetermined system

• Solution via normal equations: fitnorm

• Solution via QR factorization: fitqr and \
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Fitting Linear Combinations of Functions (1)

Consider the fitting function

F (x) = cf1(x) + c2f2(x) + . . . + cnfk(x)

or

F (x) =
nX

j=1

cjfj(x)

The basis functions

f1(x), f2(x), . . . , fn(x)

are chosen by you — the person making the fit.

The coefficients

c1, c2, . . . , cn

are determined by the least squares method.
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Fitting Linear Combinations of Functions (2)

F (x) function can be any combination of functions that are linear in the cj. Thus

1, x, x
2
, x

2/3
, sin x, e

x
, xe

4x
, cos(ln 25x)

are all valid basis functions. On the other hand,

sin(c1x), e
c3x

, x
c2

are not valid basis functions as long as the cj are the parameters of the fit.

For example, the fit function for a cubic polynomial is

F (x) = c1x
3
+ c2x

2
+ c3x + c4,

which has the basis functions

x
3
, x

2
, x, 1.
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Fitting Linear Combinations of Functions (3)

The objective is to find the cj such that F (xi) ≈ yi.

Since F (xi) �= yi, the residual for each data point is

ri = yi − F (xi) = yi −
nX

j=1

cjfj(xi)

The least-squares solution gives the cj that minimize ‖r‖2.
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Fitting Linear Combinations of Functions (4)

Consider the fit function with three basis functions

y = F (x) = c1f1(x) + c2f2(x) + c3f3(x).

Assume that F (x) acts like an interpolant. Then

c1f1(x1) + c2f2(x1) + c3f3(x1) = y1,

c1f1(x2) + c2f2(x2) + c3f3(x2) = y2,

...

c1f1(xm) + c2f2(xm) + c3f3(xm) = ym.

are all satisfied.

For a least squares fit, the equations are not all satisfied, i.e., the fit function F (x) does

not pass through the yi data.
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Fitting Linear Combinations of Functions (5)

The preceding equations are equivalent to the overdetermined system

Ac = y,

where

A =

2
664

f1(x1) f2(x1) f3(x1)

f1(x2) f2(x2) f3(x2)
... ... ...

f1(xm) f2(xm) f3(xm)

3
775 ,

c =

2
4c1

c2

c3

3
5 , y =

2
664

y1

y2
...

ym

3
775 .
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Fitting Linear Combinations of Functions (6)

If F (x) cannot interpolate the data, then the preceding matrix equation cannot be solved

exactly: b does not lie in the column space of A.

The least-squares method provides the compromise solution that minimizes

‖r‖2 = ‖y − Ac‖2.

The c that minimizes ‖r‖2 satisfies the normal equations

(A
T
A)c = A

T
y.
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Fitting Linear Combinations of Functions (7)

In general, for n basis functions

A =

2
664

f1(x1) f2(x1) . . . fn(x1)

f1(x2) f2(x2) . . . fn(x2)
... ... ...

f1(xm) f2(xm) . . . fn(xm)

3
775 ,

c =

2
664

c1

c2
...

cn

3
775 , y =

2
664

y1

y2
...

ym

3
775 .
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Example: Fit a Parabola to Six Points (1)

Consider fitting a curve to the following

data.

x 1 2 3 4 5 6

y 10 5.49 0.89 −0.14 −1.07 0.84

Not knowing anything more about the

data we can start by fitting a polynomial

to the data.
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Example: Fit a Parabola to Six Points (2)

The equation of a second order polynomial can be written

y = c1x
2
+ c2x + c3

where the ci are the coefficients to be determined by the fit and the basis functions are

f1(x) = x
2
, f2(x) = x, f3(x) = 1

The A matrix is

A =

2
664

x2
1 x1 1

x2
2 x2 1
... ... ...

x2
m xm 1

3
775

where, for this data set, m = 6.
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Example: Fit a Parabola to Six Points (3)

Define the data

>> x = (1:6)’;
>> y = [10 5.49 0.89 -0.14 -1.07 0.84]’;

Notice the transposes, x and y must be column vectors.

The coefficient matrix of the overdetermined system is

>> A = [ x.^2 x ones(size(x)) ];

The coefficient matrix for the normal equations is

>> disp(A’*A)
2275 441 91
441 91 21
91 21 6
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Example: Fit a Parabola to Six Points (4)

The right-hand-side vector for the normal equations is

>> disp(A’*y)
A’*y =

41.2200
22.7800
16.0100

Solve the normal equations

>> c = (A’*A)\(A’*y)
c =

0.8354
-7.7478
17.1160
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Example: Fit a Parabola to Six Points (5)

Evaluate and plot the fit

>> xfit = linspace(min(x),max(x));
>> yfit = c(1)*xfit.^2 + c(2)*xfit + c(3);
>> plot(x,y,’o’,xfit,yfit,’--’);
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Example: Alternate Fit to Same Six Points (1)

Fit the same points to

F (x) =
c1

x
+ c2x

The basis functions are

1

x
, x

In Matlab:

>> x = (1:6)’;
>> y = [10 5.49 0.89 -0.14 -1.07 0.84]’;
>> A = [1./x x];
>> c = (A’*A)\(A’*y)
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NMM: Least Squares Curve-Fitting page 44



Evaluating the Fit Function as a Matrix–Vector Product (1)

We have been writing the fit function as

y = F (x) = c1f1(x) + c2f2(x) + · · · + cnfn(x)

The overdetermined coefficient matrix contains the basis functions evaluated at the

known data

A =

2
664

f1(x1) f2(x1) . . . fn(x1)

f1(x2) f2(x2) . . . fn(x2)
... ... ...

f1(xm) f2(xm) . . . fn(xm)

3
775

Thus, if A is available

F (x) = Ac

evaluates F (x) at all values of x, i.e., F (x) is a vector-valued function.
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Evaluating the Fit Function as a Matrix–Vector Product (2)

Evaluating the fit function as a matrix–vector product can be performed for any x.

Suppose then that we have created an m-file function that evaluates A for any x, for

example

function A = xinvxfun(x)
A = [ 1./x(:) x(:) ];

We evaluate the fit coefficients with

>> x = ..., y = ...
>> c = fitnorm(x,y,’xinvxfun’);

Then, to plot the fit function after the coefficients of the fit

>> xfit = linspace(min(x),max(x));
>> Afit = xinvxfun(xfit);
>> yfit = Afit*c;
>> plot(x,y,’o’,xfit,yfit,’--’)
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Evaluating the Fit Function as a Matrix–Vector Product (3)

Advantages:

• The basis functions are defined in only one place: in the routine for evaluating the

overdetermined matrix.

• Automation of fitting and plotting is easier because all that is needed is one routine

for evaluating the basis functions.

• End-user of the fit (not the person performing the fit) can still evaluate the fit

function as y = c1f1(x) + c2f2(x) + · · · + cnfn(x).

Disadvantages:

• Storage of matrix A for large x vectors consumes memory. This should not be a

problem for small n.

• Evaluation of the fit function may not be obvious to a reader unfamiliar with linear

algebra.
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Matlab Implementation in fitnorm

Let A be the m × n matrix defined by

A =

2
4

... ... ...

f1(x) f2(x) . . . fn(x)
... ... ...

3
5

The columns of A are the basis functions evaluated at each of the x data points.

As before, the normal equations are

A
T
Ac = A

T
y

The user supplies a (usually small) m-file that returns A.
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fitnorm.m

function [c,R2,rout] = fitnorm(x,y,basefun)
% fitnorm Least-squares fit via solution to the normal equations
%
% Synopsis: c = fitnorm(x,y,basefun)
% [c,R2] = fitnorm(x,y,basefun)
% [c,R2,r] = fitnorm(x,y,basefun)
%
% Input: x,y = vectors of data to be fit
% basefun = (string) m-file that computes matrix A with columns as
% values of basis basis functions evaluated at x data points.
%
% Output: c = vector of coefficients obtained from the fit
% R2 = (optional) adjusted coefficient of determination; 0 <= R2 <= 1
% r = (optional) residuals of the fit

if length(y)~= length(x); error(’x and y are not compatible’); end
A = feval(basefun,x(:)); % Coefficient matrix of overdetermined system
c = (A’*A)\(A’*y(:)); % Solve normal equations, y(:) is always a column
if nargout>1

r = y - A*c; % Residuals at data points used to obtain the fit
[m,n] = size(A);
R2 = 1 - (m-1)/(m-n-1)*(norm(r)/norm(y-mean(y)))^2;
if nargout>2, rout = r; end

end
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Example of User-Supplied m-files

The basis functions for fitting a parabola are

f1(x) = x
2
, f2(x) = x, f3(x) = 1

Create the m-file poly2Basis.m:

function A = poly2Basis(x)
A = [ x(:).^2 x(:) ones(size(x(:)) ];

then at the command prompt

>> x = ...; y = ...;
>> c = fitnorm(x,y,’poly2Basis’)

or use an in-line function object:

>> x = ...; y = ...;
>> Afun = inline(’[ x(:).^2 x(:) ones(size(x(:)) ]’);
>> c = fitnorm(x,y,Afun);
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Example of User-Supplied m-files

To the basis functions for fitting F (x) = c1/x + c2x are

1

x
, x

Create the m-file xinvxfun.m

function A = xinvxfun(x)
A = [ 1./x(:) x(:) ];

then at the command prompt

>> x = ...; y = ...;
>> c = fitnorm(x,y,’xinvxfun’)

or use an in-line function object:

>> x = ...; y = ...;
>> Afun = inline(’[ 1./x(:) x(:) ]’);
>> c = fitnorm(x,y,Afun);
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R2 Statistic (1)

R2 can be applied to linear combinations of basis functions.

Recall that for a line fit (Cf. § 9.1.4.)

R
2
=

X
(ŷi − ȳ)

2

X
(yi − ȳ)

2
= 1 − ‖r‖2

2P
(yi − ȳ)2

where ŷi is the value of the fit function evaluated at xi, and ȳ is the average of the

(known) y values.

For a linear combination of basis functions

ŷi =

nX
j=1

cjfj(xi)
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R2 Statistic (2)

To account for the reduction in degrees of freedom in the data when the fit is performed,

it is technically appropriate to consider the adjusted coefficient of determination

R
2
adjusted = 1 −

„
m − 1

m − n − 1

« P
(yi − ŷ)2P
(yi − ȳ)2

,

fitnorm provides the option of computing R2
adjusted
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Polynomial Curve Fits with polyfit (1)

Built-in commands for polynomial curve fits:

polyfit Obtain coefficients of a least squares curve fit

of a polynomial to a given data set

polyval Evaluate a polynomial at a given set of x values.
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Polynomial Curve Fits with polyfit (2)

Syntax:

c = polyfit(x,y,n)
[c,S] = polyfit(x,y,n)

x and y define the data

n is the desired degree of the polynomial.

c is a vector of polynomial coefficients stored in order of descending powers of x

p(x) = c1x
n

+ c2x
n−1

+ · · · + cnx + cn+1

S is an optional return argument for polyfit. S is used as input to polyval
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Polynomial Curve Fits with polyfit (3)

Evaluate the polynomial with polyval

Syntax:

yf = polyval(c,xf)
[yf,dy] = polyval(c,xf,S)

c contains the coefficients of the polynomial (returned by polyfit)

xf is a scalar or vector of x values at which the polynomial is to be evaluated

yf is a scalar or vector of values of the polynomials: yf= p(xf).

If S is given as an optional input to polyval, then dy is a vector of estimates of the

uncertainty in yf
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Example: Polynomial Curve Fit (1)

Fit a polynomial to Consider fitting a curve to the following data.

x 1 2 3 4 5 6

y 10 5.49 0.89 −0.14 −1.07 0.84

In Matlab:

>> x = (1:6)’;
>> y = [10 5.49 0.89 -0.14 -1.07 0.84]’;
>> c = polyfit(x,y,3);
>> xfit = linspace(min(x),max(x));
>> yfit = polyval(c,xfit);
>> plot(x,y,’o’,xfit,yfit,’--’)
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Example: Conductivity of Copper Near 0 K (1)
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Example: Conductivity of Copper Near 0 K (2)

Theoretical model of conductivity is

k(T ) =
1

c1

T
+ c2T

2

To fit using linear least squares we need to write this as

γ(T ) =
1

k(T )
=

c1

T
+ c2T

2

which has the basis functions
1

T
, T

2
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Example: Conductivity of Copper Near 0 K (3)

The m-file implementing these basis functions is

function y = cuconBasis1(x)
% cuconBasis1 Basis fcns for conductivity model: 1/k = c1/T + c2*T^2
y = [1./x x.^2];

An m-file that uses fitnorm to fit the conductivity data with the cuconBasis1 function

is listed on the next page.
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Example: Conductivity of Copper Near 0 K (4)

function conductFit(fname)
% conductFit LS fit of conductivity data for Copper at low temperatures
%
% Synopsis: conductFit(fname)
%
% Input: fname = (optional, string) name of data file;
% Default: fname = ’conduct1.dat’
%
% Output: Print out of curve fit coefficients and a plot comparing data
% with the curve fit for two sets of basis functions.

if nargin<1, fname = ’cucon1.dat’; end % Default data file

% --- define basis functions as inline function objects
fun1 = inline(’[1./t t.^2]’); % t must be a column vector
fun2 = inline(’[1./t t t.^2]’);

% --- read data and perform the fit
[t,k] = loadColData(fname,2,0,2); % Read data into t and k
[c1,R21,r1] = fitnorm(t,1./k,fun1); % Fit to first set of bases
[c2,R22,r2] = fitnorm(t,1./k,fun2); % and second set of bases
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% --- print results
fprintf(’\nCurve fit to data in %s\n\n’,fname);
fprintf(’ Coefficients of Basis Fcns 1 Basis Fcns 2\n’);
fprintf(’ T^(-1) %16.9e %16.9e\n’,c1(1),c2(1));
fprintf(’ T %16.9e %16.9e\n’,0,c2(2));
fprintf(’ T^2 %16.9e %16.9e\n’,c1(2),c2(3));
fprintf(’\n ||r||_2 %12.5f %12.5f\n’,norm(r1),norm(r2));
fprintf(’ R2 %12.5f %12.5f\n’,R21,R22);

% --- evaluate and plot the fits
tf = linspace(0.1,max(t))’; % 100 T values: 0 < t <= max(t)
Af1 = feval(fun1,tf); % A matrix evaluated at tf values
kf1 = 1./ (Af1*c1); % Af*c is column vector of 1/kf values
Af2 = feval(fun2,tf);
kf2 = 1./ (Af2*c2);
plot(t,k,’o’,tf,kf1,’--’,tf,kf2,’-’);
xlabel(’Temperature (K)’); ylabel(’Conductivity (W/m/C)’);
legend(’data’,’basis 1’,’basis 2’);
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