
Finding the Roots of f(x) = 0

Gerald W. Recktenwald

Department of Mechanical Engineering

Portland State University

gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with Matlab:

Implementations and Applications, by Gerald W. Recktenwald, c© 2000–2006, Prentice-Hall,

Upper Saddle River, NJ. These slides are copyright c© 2000–2006 Gerald W. Recktenwald.
The PDF version of these slides may be downloaded or stored or printed for noncommercial,

educational use. The repackaging or sale of these slides in any form, without written
consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material for the book,
can be found at www.prenhall.com/recktenwald or web.cecs.pdx.edu/~gerry/nmm/.

Version 1.12 August 11, 2006

Overview

Topics covered in this chapter

• Preliminary considerations and bracketing.

• Fixed Point Iteration

• Bisection

• Newton’s Method

• The Secant Method

• Hybrid Methods: the built in fzero function

• Roots of Polynomials

NMM: Finding the Roots of f(x) = 0 page 2

Example: Picnic Table Leg

Computing the dimensions of a picnic table leg involves a root-finding problem.

2α

θ

w

d2

d1

h

b

d2

d1

b

d2

b2

c

αθ

α

a

θ

Leg assembly Detail of one leg

NMM: Finding the Roots of f(x) = 0 page 3

Example: Picnic Table Leg

Dimensions of a the picnic table leg satisfy

w sin θ = h cos θ + b

Given overall dimensions w and h, and the material dimension, b, what is the value of θ?

An analytical solution for θ = f(w, h, b) exists, but is not obvious.

Use a numerical root-finding procedure to find the value of θ that satisfies

f(θ) = w sin θ − h cos θ − b = 0

NMM: Finding the Roots of f(x) = 0 page 4

Roots of f(x) = 0

Any function of one variable can be put in the form f(x) = 0.

Example:

To find the x that satisfies

cos(x) = x,

find the zero crossing of

f(x) = cos(x)− x = 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.5

0

0.5

1

1.5

Solution

y = x
y = cos(x)
f = cos(x) - x

NMM: Finding the Roots of f(x) = 0 page 5

General Considerations

• Is this a special function that will be evaluated often?

• How much precision is needed?

• How fast and robust must the method be?

• Is the function a polynomial?

• Does the function have singularities?

There is no single root-finding method that is best for all situations.

NMM: Finding the Roots of f(x) = 0 page 6

Root-Finding Procedure

The basic strategy is

1. Plot the function.

➣ The plot provides an initial guess, and

an indication of potential problems.

2. Select an initial guess.

3. Iteratively refine the initial guess

with a root-finding algorithm.

NMM: Finding the Roots of f(x) = 0 page 7

Bracketing

A root is bracketed on the interval [a, b] if f(a) and f(b) have opposite sign. A sign

change occurs for singularities as well as roots

a b

f(b)

0

f(a)

a b

f(b)

0

f(a)

Bracketing is used to make initial guesses at the roots, not to accurately estimate the

values of the roots.

NMM: Finding the Roots of f(x) = 0 page 8

Bracketing Algorithm (1)

Algorithm 6.1 Bracket Roots

given: f(x), xmin, xmax, n

dx = (xmax − xmin)/n

xleft = xmin

i = 0

while i < n

i← i + 1

xright = xleft + dx

if f(x) changes sign in [xleft, xright]

save [xleft, xright] for further root-finding

end

xleft = xright

end

NMM: Finding the Roots of f(x) = 0 page 9

Bracketing Algorithm (2)

A simple test for sign change: f(a)× f(b) < 0 ?

or in Matlab

if

fa = ...

fb = ...

if fa*fb < 0

save bracket

end

but this test is susceptible to underflow.

NMM: Finding the Roots of f(x) = 0 page 10

Bracketing Algorithm (3)

A better test uses the built-in sign function

fa = ...

fb = ...

if sign(fa)~=sign(fb)

save bracket

end

See implementation in the brackPlot function

NMM: Finding the Roots of f(x) = 0 page 11

The brackPlot Function

brackPlot is a NMM toolbox function that

• Looks for brackets of a user-defined f(x)

• Plots the brackets and f(x)

• Returns brackets in a two-column matrix

Syntax:

brackPlot(’myFun’,xmin,xmax)

brackPlot(’myFun’,xmin,xmax,nx)

where

myFun is the name of an m-file that evaluates f(x)

xmin, xmax define range of x axis to search

nx is the number of subintervals on [xmin,xmax] used to
check for sign changes of f(x). Default: nx= 20

NMM: Finding the Roots of f(x) = 0 page 12

Apply brackPlot Function to sin(x) (1)

>> Xb = brackPlot(’sin’,-4*pi,4*pi)

Xb =

-12.5664 -11.2436

-9.9208 -8.5980

-7.2753 -5.9525

-3.3069 -1.9842

-0.6614 0.6614

1.9842 3.3069

5.9525 7.2753

8.5980 9.9208

11.2436 12.5664

-10 -5 0 5 10

-1

-0.5

0

0.5

1

x

f(
x)

 d
ef

in
ed

 in
 s

in
.m

NMM: Finding the Roots of f(x) = 0 page 13

Apply brackPlot to a user-defined Function (1)

To solve

f(x) = x− x
1/3
− 2 = 0

we need an m-file function to evaluate f(x) for any scalar or vector of x values.

File fx3.m: Note the use of the array operator.

function f = fx3(x)

% fx3 Evaluates f(x) = x - x^(1/3) - 2

f = x - x.^(1/3) - 2;

Run brackPlot with fx3 as the input function

>> brackPlot(’fx3’,0,5)

ans =

3.4000 3.6000

NMM: Finding the Roots of f(x) = 0 page 14

Apply brackPlot to a user-defined Function (2)

>> Xb = brackPlot(’fx3’,0,5)

Xb =

3.4211 3.6842

0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

f(
x)

 d
ef

in
ed

 in
 f

x3
.m

NMM: Finding the Roots of f(x) = 0 page 15

Apply brackPlot to a user-defined Function (3)

Instead of creating a separate m-file, we can use an in-line function object.

>> f = inline(’x - x.^(1/3) - 2’)

f =

Inline function:

f(x) = x - x.^(1/3) - 2

>> brackPlot(f,0,5)

ans =

3.4000 3.6000

Note: When an inline function object is supplied to brackPlot, the name of the

object is not surrounded in quotes:

brackPlot(f,0,5) instead of brackPlot(’fun’,0,5)

NMM: Finding the Roots of f(x) = 0 page 16

Root-Finding Algorithms

We now proceed to develop the following root-finding algorithms:

• Fixed point iteration

• Bisection

• Newton’s method

• Secant method

These algorithms are applied after initial guesses at the root(s) are identified with

bracketing (or guesswork).

NMM: Finding the Roots of f(x) = 0 page 17

Fixed Point Iteration

Fixed point iteration is a simple method. It only works when the iteration function is

convergent.

Given f(x) = 0, rewrite as xnew = g(xold)

Algorithm 6.2 Fixed Point Iteration

initialize: x0 = . . .

for k = 1, 2, . . .

xk = g(xk−1)

if converged, stop

end

NMM: Finding the Roots of f(x) = 0 page 18

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop

when current guess is close enough to the desired root.

• Convergence checking will avoid searching to unnecessary accuracy.

• Convergence checking can consider whether two successive approximations to the root

are close enough to be considered equal.

• Convergence checking can examine whether f(x) is sufficiently close to zero at the

current guess.

More on this later . . .

NMM: Finding the Roots of f(x) = 0 page 19

Fixed Point Iteration Example (1)

To solve

x− x
1/3
− 2 = 0

rewrite as

xnew = g1(xold) = x
1/3
old + 2

or

xnew = g2(xold) =
`

xold − 2
´3

or

xnew = g3(xold) =
6 + 2x

1/3
old

3− x
2/3
old

Are these g(x) functions equally effective?

NMM: Finding the Roots of f(x) = 0 page 20

Fixed Point Iteration Example (2)

g1(x) = x
1/3

+ 2

g2(x) =
`

x− 2
´3

g3(x) =
6 + 2x1/3

3− x2/3

k g1(xk−1) g2(xk−1) g3(xk−1)

0 3 3 3

1 3.4422495703 1 3.5266442931

2 3.5098974493 −1 3.5213801474

3 3.5197243050 −27 3.5213797068

4 3.5211412691 −24389 3.5213797068

5 3.5213453678 −1.451× 1013 3.5213797068

6 3.5213747615 −3.055× 1039 3.5213797068

7 3.5213789946 −2.852× 10118 3.5213797068

8 3.5213796042 ∞ 3.5213797068

9 3.5213796920 ∞ 3.5213797068

Summary: g1(x) converges, g2(x) diverges, g3(x) converges very quickly

NMM: Finding the Roots of f(x) = 0 page 21

Bisection

Given a bracketed root, halve the interval while continuing to bracket the root

a b

f (b1)

x1x2

f (x1)

f (a1)

NMM: Finding the Roots of f(x) = 0 page 22

Bisection (2)

For the bracket interval [a, b] the midpoint is

xm =
1

2
(a + b)

A better formula, one that is less susceptible to round-off is

xm = a +
b− a

2

NMM: Finding the Roots of f(x) = 0 page 23

Bisection Algorithm

Algorithm 6.3 Bisection

initialize: a = . . ., b = . . .

for k = 1, 2, . . .

xm = a + (b− a)/2

if sign (f(xm)) = sign (f(xa))

a = xm

else

b = xm

end

if converged, stop

end

NMM: Finding the Roots of f(x) = 0 page 24

Bisection Example

Solve with bisection:

x− x
1/3
− 2 = 0

k a b xmid f(xmid)

0 3 4

1 3 4 3.5 -0.01829449

2 3.5 4 3.75 0.19638375

3 3.5 3.75 3.625 0.08884159

4 3.5 3.625 3.5625 0.03522131

5 3.5 3.5625 3.53125 0.00845016

6 3.5 3.53125 3.515625 -0.00492550

7 3.51625 3.53125 3.5234375 0.00176150

8 3.51625 3.5234375 3.51953125 -0.00158221

9 3.51953125 3.5234375 3.52148438 0.00008959

10 3.51953125 3.52148438 3.52050781 -0.00074632

NMM: Finding the Roots of f(x) = 0 page 25

Analysis of Bisection (1)

Let δn be the size of the bracketing interval at the nth stage of bisection. Then

δ0 = b− a = initial bracketing interval

δ1 =
1

2
δ0

δ2 =
1

2
δ1 =

1

4
δ0

...

δn =

„

1

2

«n

δ0

=⇒
δn

δ0

=

„

1

2

«n

= 2
−n

or n = log2

„

δn

δ0

«

NMM: Finding the Roots of f(x) = 0 page 26

Analysis of Bisection (2)

δn

δ0

=

„

1

2

«n

= 2
−n

or n = log2

„

δn

δ0

«

n
δn

δ0

function

evaluations

5 3.1× 10−2 7

10 9.8× 10−4 12

20 9.5× 10−7 22

30 9.3× 10−10 32

40 9.1× 10−13 42

50 8.9× 10−16 52

NMM: Finding the Roots of f(x) = 0 page 27

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop

when current guess is close enough to the desired root.

• Convergence checking will avoid searching to unnecessary accuracy.

• Check whether successive approximations are close enough to be considered the same:

|xk − xk−1| < δx

• Check whether f(x) is close enough zero.

|f(xk)| < δf

NMM: Finding the Roots of f(x) = 0 page 28

Convergence Criteria on x

f (x)

true root

tolerance
on x

tolerance
on f (x) x

xk = current guess at the root

xk−1 = previous guess at the root

Absolute tolerance:
˛

˛xk − xk−1

˛

˛ < δx

Relative tolerance:

˛

˛

˛

˛

˛

xk − xk−1

b− a

˛

˛

˛

˛

˛

< δ̂x

NMM: Finding the Roots of f(x) = 0 page 29

Convergence Criteria on f(x)

f (x)

true root

tolerance
on x

tolerance
on f (x) x

Absolute tolerance:
˛

˛f(xk)
˛

˛ < δf

Relative tolerance:

|f(xk)| < δ̂f max
n

|f(a0)|, |f(b0)|
o

where a0 and b0 are the original brackets

NMM: Finding the Roots of f(x) = 0 page 30

Convergence Criteria on f(x)

If f ′(x) is small near the root, it is easy

to satisfy a tolerance on f(x) for a large

range of ∆x. A tolerance on ∆x is more

conservative.

f (x)

x

If f ′(x) is large near the root, it is

possible to satisfy a tolerance on ∆x

when |f(x)| is still large. A tolerance

on f(x) is more conservative.

f (x)

x

NMM: Finding the Roots of f(x) = 0 page 31

Newton’s Method (1)

For a current guess xk, use f(xk) and the slope f ′(xk) to predict where f(x) crosses

the x axis.

x1
x2

f(x1)

f(x2)

x3

NMM: Finding the Roots of f(x) = 0 page 32

Newton’s Method (2)

Expand f(x) in Taylor Series around xk

f(xk + ∆x) = f(xk) + ∆x
df

dx

˛

˛

˛

˛

xk

+
(∆x)2

2

d2f

dx2

˛

˛

˛

˛

˛

xk

+ . . .

Substitute ∆x = xk+1 − xk and neglect second order terms to get

f(xk+1) ≈ f(xk) + (xk+1 − xk) f
′
(xk)

where

f
′
(xk) =

df

dx

˛

˛

˛

˛

xk

NMM: Finding the Roots of f(x) = 0 page 33

Newton’s Method (3)

Goal is to find x such that f(x) = 0.

Set f(xk+1) = 0 and solve for xk+1

0 = f(xk) + (xk+1 − xk) f
′
(xk)

or, solving for xk+1

xk+1 = xk −
f(xk)

f ′(xk)

NMM: Finding the Roots of f(x) = 0 page 34

Newton’s Method Algorithm

Algorithm 6.4

initialize: x1 = . . .

for k = 2, 3, . . .

xk = xk−1 − f(xk−1)/f ′(xk−1)

if converged, stop

end

NMM: Finding the Roots of f(x) = 0 page 35

Newton’s Method Example (1)

Solve:

x− x
1/3
− 2 = 0

First derivative is

f
′
(x) = 1−

1

3
x
−2/3

The iteration formula is

xk+1 = xk −
xk − x

1/3
k − 2

1− 1
3x
−2/3
k

NMM: Finding the Roots of f(x) = 0 page 36

Newton’s Method Example (2)

xk+1 = xk −
xk − x

1/3
k − 2

1− 1
3x
−2/3
k

k xk f ′(xk) f(x)

0 3 0.83975005 -0.44224957

1 3.52664429 0.85612976 0.00450679

2 3.52138015 0.85598641 3.771× 10−7

3 3.52137971 0.85598640 2.664× 10−15

4 3.52137971 0.85598640 0.0

Conclusion

• Newton’s method converges

much more quickly than

bisection

• Newton’s method requires an

analytical formula for f ′(x)

• The algorithm is simple as long

as f ′(x) is available.

• Iterations are not guaranteed to

stay inside an ordinal bracket.

NMM: Finding the Roots of f(x) = 0 page 37

Divergence of Newton’s Method

x1

f(x1)

f '(x1) ≈ 0

Since

xk+1 = xk −
f(xk)

f ′(xk)

the new guess, xk+1, will be far from

the old guess whenever f ′(xk) ≈ 0

NMM: Finding the Roots of f(x) = 0 page 38

Secant Method (1)

Given two guesses xk−1 and xk, the next guess at the root is where the line through

f(xk−1) and f(xk) crosses the x axis.

x1x2

f(x1)

a

f(b)

f(a)

b

NMM: Finding the Roots of f(x) = 0 page 39

Secant Method (2)

Given

xk = current guess at the root

xk−1 = previous guess at the root

Approximate the first derivative with

f
′
(xk) ≈

f(xk)− f(xk−1)

xk − xk−1

Substitute approximate f ′(xk) into formula for Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)

to get

xk+1 = xk − f(xk)

»

xk − xk−1

f(xk)− f(xk−1)

–

NMM: Finding the Roots of f(x) = 0 page 40

Secant Method (3)

Two versions of this formula are equivalent in exact math:

xk+1 = xk − f(xk)

»

xk − xk−1

f(xk)− f(xk−1)

–

(⋆)

and

xk+1 =
f(xk)xk−1 − f(xk−1)xk

f(xk)− f(xk−1)
(⋆⋆)

Equation (⋆) is better since it is of the form xk+1 = xk + ∆. Even if ∆ is inaccurate

the change in the estimate of the root will be small at convergence because f(xk) will

also be small.

Equation (⋆⋆) is susceptible to catastrophic cancellation:

• f(xk)→ f(xk−1) as convergence approaches, so cancellation error in

the denominator can be large.

• |f(x)| → 0 as convergence approaches, so underflow is possible

NMM: Finding the Roots of f(x) = 0 page 41

Secant Algorithm

Algorithm 6.5

initialize: x1 = . . ., x2 = . . .

for k = 2, 3 . . .

xk+1 = xk

−f(xk)(xk − xk−1)/(f(xk)− f(xk−1))

if converged, stop

end

NMM: Finding the Roots of f(x) = 0 page 42

Secant Method Example

Solve:

x− x
1/3
− 2 = 0

k xk−1 xk f(xk)

0 4 3 −0.44224957

1 3 3.51734262 −0.00345547

2 3.51734262 3.52141665 0.00003163

3 3.52141665 3.52137970 −2.034× 10−9

4 3.52137959 3.52137971 −1.332× 10−15

5 3.52137971 3.52137971 0.0

Conclusions

• Converges almost as quickly as

Newton’s method.

• No need to compute f ′(x).

• The algorithm is simple.

• Two initial guesses are necessary

• Iterations are not guaranteed to

stay inside an ordinal bracket.

NMM: Finding the Roots of f(x) = 0 page 43

Divergence of Secant Method

x1 x2

f(x3)

x3

f(x2)

f (x1)

f '(x) ≈ 0

Since

xk+1 = xk−f(xk)

»

xk − xk−1

f(xk)− f(xk−1)

–

the new guess, xk+1, will be far from the

old guess whenever f ′(xk) ≈ f(xk−1)

and |f(x)| is not small.

NMM: Finding the Roots of f(x) = 0 page 44

Summary of Basic Root-finding Methods

• Plot f(x) before searching for roots

• Bracketing finds coarse interval containing roots and singularities

• Bisection is robust, but converges slowly

• Newton’s Method

⊲ Requires f(x) and f ′(x).

⊲ Iterates are not confined to initial bracket.

⊲ Converges rapidly.

⊲ Diverges if f ′(x) ≈ 0 is encountered.

• Secant Method

⊲ Uses f(x) values to approximate f ′(x).

⊲ Iterates are not confined to initial bracket.

⊲ Converges almost as rapidly as Newton’s method.

⊲ Diverges if f ′(x) ≈ 0 is encountered.

NMM: Finding the Roots of f(x) = 0 page 45

fzero Function (1)

fzero is a hybrid method that combines bisection, secant and reverse quadratic

interpolation

Syntax:

r = fzero(’fun’,x0)

r = fzero(’fun’,x0,options)

r = fzero(’fun’,x0,options,arg1,arg2,...)

x0 can be a scalar or a two element vector

• If x0 is a scalar, fzero tries to create its own bracket.

• If x0 is a two element vector, fzero uses the vector as a bracket.

NMM: Finding the Roots of f(x) = 0 page 46

Reverse Quadratic Interpolation

Find the point where the x

axis intersects the sideways

parabola passing through

three pairs of (x, f(x))

values.

0 0.5 1 1.5 2
−5

0

5

10

15

20

NMM: Finding the Roots of f(x) = 0 page 47

fzero Function (2)

fzero chooses next root as

• Result of reverse quadratic interpolation (RQI) if that result is inside the current

bracket.

• Result of secant step if RQI fails, and if the result of secant method is in inside the

current bracket.

• Result of bisection step if both RQI and secant method fail to produce guesses inside

the current bracket.

NMM: Finding the Roots of f(x) = 0 page 48

fzero Function (3)

Optional parameters to control fzero are specified with the optimset function.

Examples:

Tell fzero to display the results of each step:

>> options = optimset(’Display’,’iter’);

>> x = fzero(’myFun’,x0,options)

Tell fzero to use a relative tolerance of 5× 10−9:

>> options = optimset(’TolX’,5e-9);

>> x = fzero(’myFun’,x0,options)

Tell fzero to suppress all printed output, and use a relative tolerance of 5× 10−4:

>> options = optimset(’Display’,’off’,’TolX’,5e-4);

>> x = fzero(’myFun’,x0,options)

NMM: Finding the Roots of f(x) = 0 page 49

fzero Function (4)

Allowable options (specified via optimset):

Option type Value Effect

’Display’ ’iter’ Show results of each iteration

’final’ Show root and original bracket

’off’ Suppress all print out

’TolX’ tol Iterate until

|∆x| < max [tol, tol ∗ a, tol ∗ b]

where ∆x = (b−a)/2, and [a, b] is the current bracket.

The default values of ’Display’ and ’TolX’ are equivalent to

options = optimset(’Display’,’iter’,’TolX’,eps)

NMM: Finding the Roots of f(x) = 0 page 50

Roots of Polynomials

Complications arise due to

• Repeated roots

• Complex roots

• Sensitivity of roots to small

perturbations in the

polynomial coefficients

(conditioning).

0 2 4 6 8 10
-1

0

1

2

3

x (arbitrary units)

y
=

 f
(x

)
f
1
(x)

 distinct
real roots

f
2
(x)

repeated
real roots

f
3
(x)

complex
 roots

NMM: Finding the Roots of f(x) = 0 page 51

Algorithms for Finding Polynomial Roots

• Bairstow’s method

• Müller’s method

• Laguerre’s method

• Jenkin’s–Traub method

• Companion matrix method

NMM: Finding the Roots of f(x) = 0 page 52

roots Function (1)

The built-in roots function uses the companion matrix method

• No initial guess

• Returns all roots of the polynomial

• Solves eigenvalue problem for companion matrix

Write polynomial in the form

c1x
n

+ c2x
n−1

+ . . . + cnx + cn+1 = 0

Then, for a third order polynomial

>> c = [c1 c2 c3 c4];

>> r = roots(c)

NMM: Finding the Roots of f(x) = 0 page 53

roots Function (2)

The eigenvalues of

A =

2

6

6

4

−c2/c1 −c3/c1 −c4/c1 −c5/c1

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

are the same as the roots of

c5λ
4
+ c4λ

3
+ c3λ

2
+ c2λ + c1 = 0.

NMM: Finding the Roots of f(x) = 0 page 54

roots Function (3)

The statements

c = ... % vector of polynomial coefficients

r = roots(c);

are equivalent to

c = ...

n = length(c);

A = diag(ones(1,n-2),-1); % ones on first subdiagonal

A(1,:) = -c(2:n) ./ c(1); % first row is -c(j)/c(1), j=2..n

r = eig(A);

NMM: Finding the Roots of f(x) = 0 page 55

roots Examples

Roots of

f1(x) = x
2
− 3x + 2

f2(x) = x
2
− 10x + 25

f3(x) = x
2
− 17x + 72.5

are found with

>> roots([1 -3 2])

ans =

2

1

>> roots([1 -10 25])

ans =

5

5

>> roots([1 -17 72.5])

ans =

8.5000 + 0.5000i

8.5000 - 0.5000i

NMM: Finding the Roots of f(x) = 0 page 56

