
A Curve-Fitting Cookbook

for use with the

NMM Toolbox

Gerald Recktenwald∗

October 17, 2000

Abstract

Computational steps for obtaining curve fits with Matlab are described. The steps in-
clude reading data into Matlab variables, setting up the overdetermined system of equations,
obtaining the least squares solution, and plotting a comparision of the fit function with the
original data. The procedures and Matlab routines from [1] are demonstrated for fits of data
to lines, functions that may be transformed into lines, polynomials, arbitrary linear combination
of functions, and multivariate (surface) fits.

1 Introduction

This document provides a minimal set of instructions for obtaining univariate and multivariate curve
fits using Matlab. Readers are expected to understand the nature of curve fitting, and the basic
procedures involved. For a complete introduction to curve-fitting with Matlab see [1] and the
Numerical Methods with Matlab (NMM) Toolbox described therein.

1.1 Objective of fitting

Given m data pairs, (xi, yi), find the coefficients, cj , in the function

F (x) = c1f1(x) + c2f2(x) + . . .+ cnfn(x) (1)

such that F (xi) ≈ yj . F (x) is called the fit function. The fj(x) are called the basis functions of
F (x). In curve fitting there are more data points, m, than basis functions, n.
The user chooses the basis functions. The ci are determined by solving the least squares problem

for an m×n system of equations (m equations in n unknowns, where m > n). The m equations are
obtained by evaluating the fit function at each of the known data points.

1.2 Residuals

Since F (xi) will not, in general, exactly equal yi, compute the residual, ri, at the ith data point

ri = yi − F (xi) (2)

A least squares fit finds the cj in equation (1) such that
∑m

i=1 r2
i is minimized. “Least” refers to

the process of minimization. “Squares” refers to the quantity being minimized, i.e., the sum of the
squares of the residuals,

∑
r2
i .
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1.3 Data with Errors

An alternative view of curve-fitting takes F (x) as the true model of the (x, y) data. The xi are
assumed to be known exactly, and the yi are assumed to contain a random error, εi. Because of the
error in yi, F (xi) �= yi. In this view of curve-fitting the relationship between the fit function and
the data is

yi = F (xi) + εi (3)

The εi in Equation (3) play an analogous role to the ri in Equation (2). If we can further assume
that the εi are normally distributed random variables, i.e. if the observed εi is taken from a Gaussian
distribution of possible ε at each xi, then the least squares fit provides the most likely estimate of
the cj that are the adjustable parameters in Equation (1).

1.4 Overdetermined System of Equations

Consider the task of fitting m data points to three basis functions, i.e.

y = F (x) = c1f1(x) + c2f2(x) + c3f3(x) (4)

Assume for the moment that the ci can be found so that the F (x) passes exactly through all the
data, i.e., suppose that the data “line up” so that the curve fit function acts like an interpolant.
Then each of the following m equations would be satisfied exactly

c1f1(x1) + c2f2(x1) + c3f3(x1) = y1

c1f1(x2) + c2f2(x2) + c3f3(x2) = y2

...
c1f1(xm) + c2f2(xm) + c3f3(xm) = ym

This is equivalent to the overdetermined system

Ac = y (5)

where

A =




f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)
...

...
...

f1(xm) f2(xm) f3(xm)


 c =




c1

c2

c3


 y =




y1

y2

...
ym


 (6)

To develop equation (5) we momentarily assumed that the data fell along the curve given by equa-
tion (4). In general this will not be the case. Since there are more equations than free parameters
(m > n), the exact solution to equation (5) cannot be obtained. In other words, when m > n it is
not usually possible to find the cj that simultaneously satisfy all m equations.
The least squares method provides the compromise solution that minimizes ‖r‖2

2 = ‖y − Ac‖2
2.

The minimum value of ‖r‖2
2 is obtained by the c vector that satisfies the normal equations

(AT A)c = AT y (7)

(AT A) is an n × n matrix, and AT y is an n-element column vector. As long as (AT A) is not ill-
conditioned,1 the solution to Equation (7) may be obtained by Gaussian elimination. In fact, AT A

1If two or more of the basis functions are linearly dependent, then A will be rank-deficient and AT A will be
singular. In other cases the condition number of AT A will be large if the elements in A have large variations in the
order of magnitude
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is symmetric and positive definite (see, e.g. [2]) so that Equation (7) can be solved via Cholesky
factorization. Instead of solving the normal equations one can use an orthogonal decomposition of A
to compute the least squares solution directly from equation (5). Matlab routines that implement
both procedures are discussed below.
For the general case of fitting n basis functions to m data points we have

A =




f1(x1) f2(x1) . . . fn(x1)
f1(x2) f2(x2) . . . fn(x2)
...

...
...

f1(xm) f2(xm) . . . fn(xm)


 c =




c1

c2

...
cn


 y =




y1

y2

...
ym


 (8)

Typically m � n.

1.5 Numerical Procedures

To set up the least squares problem for computer solution

1. Read the (x, y) data into program variables

2. Compute A, the m × n matrix defined by the xi data (i = 1, . . . , m) and the basis functions,
fj , j = 1, . . . , n

A =




f1(x1) f2(x1) . . . fn(x1)
f1(x2) f2(x2) . . . fn(x2)
...

...
...

f1(xm) f2(xm) . . . fn(xm)


 (9)

3. Solve for c using one of the procedures described below.

1.5.1 Solution via the Normal Equations

Given A defined by equation (9), the c can be obtained by solving equation (7). These steps are
automated by the fitnorm function in the NMM Toolbox.

1.5.2 Solution via QR Factorization

Given A defined by equation (9), the c can be obtained via QR factorization of A

A = QR

where Q is an orthogonal matrix and R is an upper triangular matrix. See [1, § 9.2.3] for details.
The properties of Q and R give the least squares solution as

c = R−1QT y (10)

Since R is upper triangular the steps implied by equation (10) can be carried out efficiently once Q
and R are available.
The fitqr function in the NMM Toolbox obtains a least squares curve fit using QR factorization.

Use of the fitqr function is described in § 6, below.
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2 Reading data into Matlab variables

Data for the fit must first be stored in Matlab variables. This can be achieved by assigning the
values of x and y directly, i.e.,

x = [ ... ]

y = [ ... ]

or the data can be read from a file. The following procedures can be used to read data from a file

1. Read “naked” data with the built-in load function

2. Read data from a file containing a text header (optional) and text column headings with the
NMM loadColData function.

3. Read data from a file containing a text header (optional), text column headings, and the first
column in a (string) date format with the NMM loadColDateData function.

2.1 Using the built-in load function

The built-in load function reads numeric data from a plain text file into a Matlab matrix. The
file must contain only numbers that are arranged in rows and columns. The number of columns in
each row must be the same.
The load function can be used in two ways: in command form and in function form. Both

ways can be used to achieve the same effect, though the syntax of the methods is different. The
syntax of the command form is

load filename

where filename is the name of the file containing data. The result of executing the command form
is that the contents of filename are stored in aMatlab variable named filename. If the filename
contains an extension, such as .dat or .txt, the Matlab variable created by the statement load
filename is the creation of a variable without the extension. For example

load myData.dat

creates a variable named myData that contains the contents of the file named myData.dat, and
load yourData

creates a variable named yourData that contains the contents of the file named yourData.
The function form of the load function has the syntax
D = load(’filename’)

In this usage, the data contained in filename is stored in the variable called D.

2.1.1 Example: Reading Data from a Plain Text File

The airvisc.dat file contains data for the viscosity of air as a function of temperature. The data
in in two columns. The first column is the temperature in ◦C, and the second column is the viscosity
in kg/(m · s). The first few lines of airvisc.dat look like

0 1.720e-5

20 1.817e-5

40 1.911e-5

... additional data in file
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If the airvisc.dat file is in the Matlab path, the following statements load the data into the p
and t variables

>> load airvisc.dat % Data is stored in "airvisc" matrix

>> t = airvisc(:,1); % Copy first column of airvisc into t

>> mu = airvisc(:,2); % and second column into mu

The same effect is achieved with
>> D = load(’airvisc.dat’); % Data is stored in D matrix

>> t = D(:,1); % Copy first column of D into t

>> mu = D(:,2); % and second column into mu

Or, if the full path to airvisc.dat file is (on aWindowsTM computer) in c:\matlab\toolbox\nmm\data
the following could be used

>> D = load(’c:\matlab\toolbox\nmm\data\airSat.dat’);

>> p = D(:,1); t = D(:,2);

The function form of load is useful when the name of a data file is passed into another function
that is responsible for reading, and possibly manipulating, the data. Consider the plotMyData
function listed below.

function plotMyData(fname)

% plotMyData Plot (x,y) data in a named text file

%

% Synopsis: plotMyData(fname)

%

% Input: fname = (string) name of file containing data

%

% Output: A plot of the data in fname

D = load(fname);

plot(D(:,1),D(:,2));

2.2 Using the NMM loadColData function

Often data files contain descriptive text in addition to the numerical data. The NMM loadColData
allows reading of data from such files providing that all of the descriptive text is at the top of the
file.
The contents of the pdxTave.dat file are

Historically averaged temperature data

recorded at the Portland International Airport

Temperatures in degrees F

month high low ave

1 45.36 33.84 39.6

2 50.87 35.98 43.43

3 56.05 38.55 47.3

4 60.49 41.36 50.92

5 67.17 46.92 57.05

6 73.82 52.8 63.31

7 79.72 56.43 68.07

8 80.14 56.79 68.47

9 74.54 51.83 63.18

10 64.08 44.95 54.52

11 52.66 39.54 46.1

12 45.59 34.75 40.17
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The first three rows of the file contains a header describing the contents of the file. The fourth row
contains labels for the data in the columns.
The contents of the pdxTave.dat file are read with

>> [month,T,labels] = loadColData(’pdxTave.dat’,4,3)

The “4” argument tells loadColData that the data is contained in four columns. The “3” argument
tells loadColData that the data is preceded by a three line header of text information.
The advantage of using loadColData is that the important labeling data can be left in the file.

To read the same file with the load function, one would have to delete the header and column labels.
That would defeat the purpose of documenting the data with the header and column labels.

2.3 Using the NMM loadColDateData function

The contents of the tualatin.dat file are
Date Temperature Conductivity DO FlowRate

06/05/1980 14.50 125 7.20 364

07/10/1980 20.00 183 5.00 201

08/07/1980 19.40 134 6.50 189

09/11/1980 17.50 136 6.60 213

10/09/1980 14.00 109 8.00 374

... more data in file

The data is from water quality measurements in the Tualatin river in Oregon. The first row contains
labels for the data in the columns. The first column is in a mm/dd/yyyy date format, where mm is
the number of the month, dd is the number of the date, and yyyy is the year.
The contents of the tualatin.dat file are read with

>> [d,Y,labels] = loadColDateData(’tualatin1.dat’,5,0,1);

where d is a vector of dates stored in Matlab’s datenum format, Y is a matrix containing the
data in columns 2 through 4, and labels is a string matrix holding the column labels. Type help
loadColDateData or read the source code of the function to get more information on the options
and inputs to the loadColDateData function.

3 Fitting a line to data: y = c1x + c2

3.1 Using linefit

The NMM linefit function fits a line to data. The equation of the line is y = c1x+ c2. A typical
usage is

>> x = ...

>> y = ...

>> c = linefit(x,y)

or
>> [c,R2] = linefit(x,y)

where R2 is the R2 statistic. See [1, § 9.1.4]. Given the x, y, and c vectors defined in the preceding
statments, the following statements evaluate the fit function and plot a comparison of the fit with
the original data

>> xfit = [min(x) max(x)];

>> yfit = c(1)*xfit + c(2);

>> plot(x,y,’o’,xfit,yfit,’--’);

>> legend(’data’,’fit’);
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3.2 Using polyfit

The built-in polyfit function obtains curve fits of polynomials to (x, y) data. Since a line is a
polynomial of degree 1, the polyfit function can be used to fit a line as follows

>> x = ...

>> y = ...

>> c = polyfit(x,y,1)

or
>> [c,S] = polyfit(x,y,1)

where S is a data structure used by the built-in polyval to obtain error bounds that contain 50
percent of the data, if the errors in the data are independent, normally distributed, and have the
same variance.

4 Fitting a Line to Transformed Data

With a suitable change of variables, some simple nonlinear functions can be transformed to a linear
function. A linear least squares curve fit can then be performed on the transformed variables. For
example, a simple exponential growth/decay curve is a line when plotted on semilogarithmic axes

y = c1e
c2x −→ ln y = ln c1 + c2x

Similarly a simple power law transforms as follows

y = c1x
c2 −→ ln y = ln c1 + c2 lnx

4.1 Fit y = c1e
c2x to Data.

The following statements fit y = c1e
c2x to a set of (x, y) data

>> x = ...

>> y = ...

>> ct = linefit(x,log(y)); % Line fit to transformed data

>> c = [exp(ct(2)); ct(1)] % Extract parameters from transformation

4.2 Fit y = c1x
c2 to Data.

The following statements fit y = c1x
c2 to a set of (x, y) data

>> x = ...

>> y = ...

>> ct = linefit(log(x),log(y)); % Line fit to transformed data

>> c = [exp(ct(2)); ct(1)] % Extract parameters from transformation

5 Fitting Polynomials to Data

The built-in polyfit function performs the least squares fit of a degree n polynomial to vectors of
(x, y) data. The built-in polyval function evaluates a polynomial at given x points.

polyfit, polyval, and other built-in Matlab routines for manipulating polynomials store the
coefficients of the polynomial in a row vector. The coefficients of the polynomial are in order of
decreasing powers of x.

y = c1x
n + c2x

n−1 + . . .+ cnx+ cn+1 (11)

The following statements obtain a polynomial curve fit and plot the data along with the fit on the
same plot.
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>> x = ...

>> y = ...

>> n = ... % degree of the polynomial

>> c = polyfit(x,y,n);

>> xfit = linspace(min(x),max(x)); % 100 points in range of x

>> yfit = polyval(c,xfit);

>> plot(x,y,’o’,xfit,yfit,’-’);

>> legend(’data’,sprintf(’degree %d polynomial’));

If specific terms in the fit function are to be omitted, e.g., if F (x) = c1x+ c2 (no constant term),
then polyfit cannot be used. The following section shows how the NMM toolbox routines fitnorm
and fitqr can be used to fit such polynomial expressions to data.

6 Fitting Arbitrary Linear Combinations of Basis Functions

The general least squares fitting problem involves the fit function

F (x) = c1f1(x) + c2f2(x) + . . .+ cnfn(x)

defined in terms of the basis functions, fj , j = 1, . . . , n.
Least squares fits to arbitrary, linear combinations of basis functions can be obtained with the

NMM fitnorm and fitqr functions. These functions have the same syntax. The only difference
is in the numerical algorithm used to solve the least squares problem. fitnorm solves the normal
equations. fitqr uses QR factorization of the overdetermined coefficient matrix. In general, fitqr
is recommended.
Both fitnorm and fitqr require the user to supply an m-file function that returns the A matrix

in equation (9). This m-file is usually quite short — often only one line long. For example, the basis
functions of

F (x) =
c1

x
+ c2x (12)

are defined in the xinvpxBasis function

function A = xinvpxBasis(x)

% xinvpxBasis Matrix with columns evaluated with 1/x and x

A = [1./x x];

A curve fit of equation (12) to a set of (x, y) data is obtained with
>> x = ...

>> y = ...

>> c = fitqr(x,y,’xinvpxBasis’);

Note that the A matrix returned by the basis function m-file must have m rows and n columns. If,
for example, the x variable is a row vector then the A matrix returned by xinvpxBasis will be a
long row vector. To guard agains this possibility the xinvpxBasis function should be rewritten as

function A = xinvpxBasis(x)

% xinvpxBasis Matrix with columns evaluated with 1/x and x

A = [1./x(:) x(:)];

The x(:) subexpressions convert x to a column vector before performing any mathematical opera-
tions on the elements of x.
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6.1 Use of inline function objects

Version 5 and later of Matlab supports the use of object oriented programming constructs. For
our purposes the immediately useful aspect of the capability is in the definition of an inline function
object. Instead of writing a separate xinvpxBasis function to evaluate the A matrix (in the preceding
example), we could write

>> x = ...

>> y = ...

>> Afun = inline(’[1./x(:) x(:)]’)

>> c = fitqr(x,y,Afun);

The Afun = inline(’[1./x(:) x(:)]’) expression creates an inline function object called Afun
that can be used just like a function defined in an external m-file. Notice that in the call to fitqr,
Afun is not enclosed in quotes.

Example: Fitting Monomial Basis Functions

Suppose that the data to be fit corresponds to a known theoretical model. In that case an arbitrary
polynomial fit would not be appropriate (unless, of course, the theoretical model is a polynomial).
Here we demonstrate the procedure for the fit function

y = c1x
3 + c2 (13)

Because the x2 and x terms are missing, Equation (13) cannot be fit with the built-in polyfit
function.
The basis functions in Equation (13) are x3 and 1. The following statement defines an in-line

function object to evaluate the basis functions in the (two) columns of a matrix.
>> Afun = inline(’[x(:).^3 ones(size(x(:)))]’)

Now, suppose the data is stored in a plain text file called myData.dat. The following statements
load the data from the file and use the fitqr function to obtain the coefficients of the fit. (Note
that myData.dat is a ficticious file, so the coefficients of the fit are not printed here.)

>> D = load(’myData.dat’); % Read data into the D matrix

>> x = D(:,1); y = D(:,2); % Store data in two column vectors

>> c = fitqr(x,y,Afun); % Obtain the fit using the inline fcn object

Finally, we evaluate the fit, and plot a comparison of the fit function with the original data.
>> xfit = linspace(min(x),max(x)); % 100 pts in range of original data

>> A = Afun(xfit); % Columns of A are basis fcns eval at x

>> yfit = A*c; % Fit function evaluated at xfit

>> plot(x,y,’o’,xfit,yfit,’-’);

7 Multivariate fits: y = F (x1, x2, . . . , xp)

When a single dependent variable, y, is a function of p independent variables, x1, x2, . . . , xp, a
linear least squares fit can be obtained with fitting functions of the form

F (x1, x2, . . . , xp) = c1f1(x1, x2, . . . , xp) + c2f2(x1, x2, . . . , xp) + . . .+ cnfn(x1, x2, . . . , xp)

The simplest case is when the dependent variable is linearly related to each of the independent
variables, i.e.,

y = F (x1, x2, . . . , xp) = c1x1 + c2x2 + . . .+ cnxn + cn+1
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In this case the number of basis functions is one more than the number of of independent variables
if the constant term cn+1 is included. The NMM Toolbox does not include general purpose routines
for multivariate fitting. Using the \ operator it is easy to obtain such a fit in just a few lines of
Matlab code. For example, to fit

y = c1x1 + c2x3 + c3x3 + c4

use the following Matlab statements
>> x1 = ... % store values of given data

>> x2 = ...

>> x3 = ...

>> y = ...

>> A = [ x1(:) x2(:) x3(:) ones(length(x1(:)),1)]

>> c = A\y(:)

The x1(:), x2(:), and x3(:) expressions guarantee that A is formed from four column vectors.
This will not be necessary if x1, etc. are already a column vectors. The c = A\y expression solves
the least squares problem Ac = y. Since A is m × n, the \ operator performs a QR factorization of
A and then obtains the least squares solution, via equation (10).

References

[1] G. W. Recktenwald. Numerical Methods with MATLAB: Implementations and Applications.
Prentice-Hall, Englewood Cliffs, NJ, 2000.

[2] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley, MA,
1986.


