Example: Two-way ANOVA on Laundry Detergent, LRS pp.518-522

Load the data

- 1. Open laundry2.txt. Don't read first row as the header.
- 2. Label columns: C1: dirt_removed, C2: detergent, C3: temperature

Make BoxPlots

1. *Wrong way*: Look at only Detergent brand

2. Correct way: Boxplot with separate Factors

Two-way ANOVA

The three hypotheses to test are

1. There is no effect due to detergent brand. Let μ_A be the mean amount of dirt removed by brand A, and μ_B be the mean amount of dirt removed by brand B.

H₀:
$$\mu_A = \mu_B$$

H₁: $\mu_A \neq \mu_B$

2. There is no effect due to temperature. Let μ_{T1} be the mean amount of dirt removed at temperature T_1 , and μ_{T2} be the mean amount of dirt removed at temperature T_2 .

$$H_0: \ \mu_{T1} = \mu_{T2} \\ H_1: \ \mu_{T1} \neq \mu_{T2}$$

3. There are no interactions.

H₀: Interaction of detergent and temperature is zero

H1: Interaction of detergent and temperature is not zero

Choose significance : $\alpha = 0.05$

2

Use MINITAB to perform the two-way ANOVA

- 1. Stat \rightarrow ANOVA-two way
 - a. Click Graphs..., then select BoxPlots of data
 - b. Check Display means for both "detergent" and "temperature"

Two-way ANOVA	A: di	.rt_removed	versus de	etergent, t	emperature	
Source	DF	SS MS	F	P		
detergent	1	51.2 51.2	15.52	0.001		
temperature	1	39.2 39.2	11.88	0.003		
Interaction	1	5.0 5.0	1.52	0.236		
Error	16	52.8 3.3				
Total	19	148.2				
S = 1.817 I	R-Sq	= 64.37%	R-Sq(adj) = 57.69%		
Individual 95% CIs For Mean Based on Pooled StDev detergent Mean						
X 10	6.7	(*)			
Y 19	Y 19.9 ()					
		16.5	18.0	19.5	21.0	
Individual 95% CIs For Mean Based on Pooled StDev temperature Mean+++++++						
Hot 19.7 ()						
Warm 16.9 ()						
warm	16.9	(*)			
warm	16.9	(*)	+		
warm	16.9	(* + 16.5) + 18.0	+ 19.5	21.0	

Hypothesis 1: There is no effect of detergent

 $F_A = MSA/MSE = 15.52$, dfn = 1; dfd = 16, p = 0.001

Since $p \approx 0.001$, the observed F is not with the region of acceptance. We reject the null hypothesis: there is strong evidence (at $p \approx 0.001$) that the kind of detergent has an effect on the amount of dirt removed. Or, we can say: there is a roughly 1/1000 chance that the choice of detergent has *no* effect.

How would you compute p-value for the observed F statistic if it was not included in the ANOVA report in the Session Window?

- 1. Calc \rightarrow Probability Distributions \rightarrow F...
- 2. Select Cumulative probability, leave Noncentrality parameter equal to 0
- 3. Numerator degrees of freedom: 1
- 4. Denominator degrees of freedom: 16
- 5. Input constant: 15.52

```
Cumulative Distribution Function
```

```
F distribution with 1 DF in numerator and 16 DF in denominator
```

```
x P(X<=x)
15.52 0.998828
```

P is the cumulative distribution, so the *p*-value is

 $1 - P(X \le x) = 1 - 0.9988 = 0.00112$

Hypothesis 2: There is no effect of temperature

 $F_B = MSB/MSE = 11.88$, dfn = 1; dfd = 16, p = 0.003

Since p = 0.003, the observed F is not with the region of acceptance. We reject the null hypothesis. There is strong evidence (at p = 0.003) that the temperature has an effect on the amount of dirt removed. Or, we can say: there is a roughly 3/1000 chance that the choice of temperature has *no* effect.

Hypothesis 3: There is no interaction

 $F_{AB} = MSAB/MSE = 1.52$, dfn = 1; dfd = 16, p = 0.236

Since p>0.05, the observed F is in the region of acceptance. We do not reject the null hypothesis. There is no evidence that there is an interaction between temperature and brand. Or, we can say: the small effect of interaction between detergent brand and temperature is likely due to chance.

4

Interaction Plots

- 1. Stat \rightarrow ANOVA \rightarrow Interaction Plots
- 2. Responses: dirt_removed
- 3. Factors: detergent and temperature
 - a. Click in the empty *Factors* box
 - b. Select C2: detergent and C3: temperature in the larger box on the left
 - c. Click the *Select* button

Example: Two-level, Three-factor ANOVA on Laundry Detergent, pp.525-531

The data set laundry3.txt contains data on a two-level, three factor experiment. The levels are fixed, so there are $2^3 = 8$ experimental conditions. Each condition is replicated twice, giving 16 experimental observations.

The response is the amount of dirt removed. The factors are detergent brand (X or Y), detergent type (powder or liquid), and washing temperature (hot or warm). Therefore, there are three main effects — brand, type and temperature — and three possible interactions — brand × type, brand × temperature, and type × temperature. This leads to six F tests for six null hypotheses. The significance is chosen to be $\alpha = 0.5$.

Load the data

- 1. Open laundry3.tx t. Don't read first row as the header.
- 2. Label columns: C1: brand, C2: temperature, C3: type, C4: dirt_removed

Use Balanced ANOVA

- 1. Stat \rightarrow ANOVA \rightarrow Balanced ANOVA
- 2. Make the following selections in the Balance Analysis of Variance dialog box
 - a. In the Responses box enter dirt_removed
 - b. In the *Model* box enter: brand temperature type brand*temperature brand*type temperature*type

Balan	ced Analysis of	Variance	×		
C4	dirt_removed	Responses: dirt_removed			
		Model:			
		brand temperature type brand*temperature brand*type temperature*type			
		Random factors:			
		A			
		Options			
	Select	Graphs Results Storage			
	Help	OK Cancel			

3 Click OK

```
ANOVA: dirt_removed versus brand, temperature, type
Factor
             Type
                   Levels Values
brand
             fixed
                        2 X, Y
temperature fixed
                        2 Hot, Warm
             fixed
                        2 Liquid, Powder
type
Analysis of Variance for dirt_removed
                  DF
Source
                           SS
                                   MS
                                            F
                                                   Ρ
                       22.090
                               22.090 156.54 0.000
brand
                   1
temperature
                       27.040
                               27.040 191.62 0.000
                   1
type
                       67.240 67.240 476.50 0.000
                   1
                                        3.47 0.095
brand*temperature
                   1
                        0.490
                                0.490
brand*type
                        3.610
                                3.610
                                        25.58 0.001
                   1
temperature*type
                   1
                        0.040
                               0.040
                                         0.28 0.607
                                0.141
Error
                   9
                        1.270
Total
                  15 121.780
S = 0.375648
              R-Sq = 98.96\%
                              R-Sq(adj) = 98.26\%
```

Show plots of Main Effects

- 1. Stat \rightarrow ANOVA \rightarrow Main Effects Plot
 - a. In the Responses box enter dirt_removed
 - b. In the Factors box enter brand temperature type

- 2. You can change the alignment so that all three factors are on the same row, which makes visual comparison of the response easier. This step is optional
 - a. With the plot in the foreground, select Editor \rightarrow Panel...
 - b. In the Arrangement tab, select the *Custom* radio button in the *Rows and Columns* region. Set the display to 1 *Rows* and 3 *Columns*

Edit Panels	×
Arrangement Options Font Courses and Columns	
Margins between panels: 0 (0-0.25)	
Help QK Cancel	

Show plots of Interactions

- 1. Stat \rightarrow ANOVA \rightarrow Interaction Plots
 - a. Response: dirt_removed
 - b. Factors: brand temperature type
 - c. Check: Display full interaction plot matrix

Interactions are evident when the response lines are not parallel. From the plots in the upper right corner and lower left corner, we suspect that there is an interaction between brand and type. The plots are consistent with the ANOVA which suggests that we reject the null hypotheses for the brand/type interaction at p=0.001.

Including the Higher Order Interaction Term

The preceding analysis did not include the three-way interaction between brand, temperature and type. What can we expect if that interaction is included?

Adding the interaction to the model allows for more of the variance to be explained by factors under control of the person who designs the experiment. The variation is already present in the result.

Add the three-way interaction and re-run the analysis.

- 1. Stat \rightarrow ANOVA \rightarrow Balanced ANOVA
- 2. Make the following selections in the Balance Analysis of Variance dialog box
 - a. In the *Model* box add the interaction: brand*temperature*type

3. Click OK

ANOVA: dirt_removed versus brand, temperature, type					
Factor Type Level brand fixed temperature fixed type fixed	s Values 2 X, Y 2 Hot, Warm 2 Liquid, Powder				
Analysis of Variance for	dirt_removed				
Source D	F SS MS F P				
brand	1 22.090 22.090 140.25 0.000				
temperature	1 27.040 27.040 171.68 0.000				
type	1 67.240 67.240 426.92 0.000				
brand*temperature	1 0.490 0.490 3.11 0.116				
brand*type	1 3.610 3.610 22.92 0.001				
temperature*type	1 0.040 0.040 0.25 0.628				
brand*temperature*type	1 0.010 0.010 0.06 0.807				
Error	8 1.260 0.157				
Total 1	5 121.780				
S = 0.396863 R-Sq = 98.	97% R-Sg(adi) = 98.06%				
2 0000000 K bq - 900					

The following exerpts from the MINITAB output show the differences with the analysis without the three way interaction term:

Without the three way interaction: (partial results) brand*type 1 3.610 3.610 25.58 0.001 temperature*type 0.040 0.040 0.28 0.607 1 Error 9 1.270 0.141

With the three way interaction: (partial results)

Total

15 121.780

man and an oo may interact	011.	partial 100	uno)			
brand*type	1	3.610	3.610	22.92	0.001	
temperature*type	1	0.040	0.040	0.25	0.628	
brand*temperature*type	1	0.010	0.010	0.06	0.807	
Error	8	1.260	0.157			
Total	15	121.780				

The sum of squares (SS) and mean sum of squares (MS) for the main effects and the twoway interactions are unchanged. Adding the three way interaction creates a row with values for SS, MS, F, and p values of the three way interaction. Also changed is the magnitude of SSE, which has decreased, and the magnitude of MSE, which has increased. The value of SSE is decreased exactly by the amount of the SS attributed to the three-way interaction. The value of MSE increases because the number of degrees of freedom for MSE decreases. In this case the decrease in SSE is more than offset by the decrease in the number of degrees of freedom: (1.26/8) > (1.27/9).

This example shows that by explicitly including more terms in the model for the variance, the amount of unexplained error (attributed to SSE) is decreased. Note that changing MSE will change the F and p values for the main effects because the F statistic in those terms has MSE in the denominator.