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This document briefly summarizes a set of Matlab programs for computing flow properties for
the one-dimensional isentropic flow of an ideal gas. The nomenclature and sign conventions used
here are consistent with the textbooks by Munson, Young and Okiishi [1], and White [2].

Governing Equations

Stagnation Properties as Functions of Ma

For one-dimensional, compressible, isentropic flow of and ideal gas the following equations relate the
static properties, p, T , and ρ to the stagnation properties, p0, T0, and ρ0.
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where k = cp/cv is the specific heat ratio and Ma = V/
√

kRT is the Mach number.

Duct Area Relationship for a Converging-Diverging Nozzle

For isentropic flow in a converging-diverging nozzle the ratio of local duct area to the area at the
throat is uniquely related to the value of Ma. If A∗ is the area of the duct section where Ma = 1,
then the area at any other section along a converging-diverging nozzle is related to Ma by
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Note that this ratio may be computed even if the flow is not sonic at the minimum physical area. In
that case A∗ is a reference value of the area, not the actual area of the duct at a particular section.

Ma as a Function of Stagnation Properties

If Ma is unknown, but one of the preceding stagnation property ratios is known, then Ma may be
computed. Solving equation (1) through (3) for Ma gives
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Ma as a Function of Area Ratio

Equation (4) cannot be solved for Ma. If A/A∗ is known equation (4) can be used in a root-finding
procedure to obtain a numerical value of Ma that satisfies the equation. Rewriting equation (4) as
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gives an equation suitable for use with the built-in fzero function. When the correct value of A/A∗

is guessed (for given values of Ma and k) then f(A/A∗) = 0.

M-files

Table 1 lists the Matlab functions that implement the computations outlined in the preceding
equations.

Examples

Compute the property ratios T/T0, p/p0, and ρ/ρ0 for air at Ma = 0.75

>> isenTT0(0.75)

ans =

0.8989

>> isenpp0(0.75)

ans =

0.6886

>> isenrr0(0.75)

ans =

0.7660
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Repeat the preceding calculations at Ma = 0.75 for Helium (k = 1.66) instead of air

>> isenTT0(0.75,1.66)

ans =

0.8434

>> isenpp0(0.7,1.665)

ans =

0.6516

>> isenrr0(0.75,1.66)

ans =

0.7726

Now, assume that the stagnation properties are known, but Ma is not. If T/T0 = 0.5 for air, the
value of Ma is

>> isenMaTT0(0.5)

ans =

2.2361

>> isenTT0(ans) % check preceding calculation

ans =

0.5000

The call to isenTT0 reverses the computation of Ma, thereby providing a check on the calculations
in the m-file. (See testIsenProps for a complete set of tests.)
For Ma = 0.75 and Ma = 1.5 the area ratio in equation (4) is computed with

>> isenAAs(0.75)

ans =

1.0624

>> isenAAs(1.5)

ans =

1.1762

The inverse computation is handled by the isenMaaas function.

>> isenMaaas(1.0624)

ans =

0.7500

>> isenMaaas(1.1762)

ans =

0.6104

This last result appears to be in error, but it is not. By default, isenMaaas returns the subsonic
Ma that satisfies equation (4) for a given value of A/A∗. For a given A/A∗ both subsonic (Ma < 1)
and supersonic (Ma > 1) solutions are possible. To select the supersonic solution a second input to
the isenMaaas function is needed. Only the sign of the second argument is important: if the second
argument is negative the subsonic branch is chosen, if it is positive the supersonic branch is chosen.
Thus

>> isenMaaas(1.1762,1)

ans =

1.5000
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confirms that isenAAs and isenMaaas are working correctly.
The testIsenProps, MYO_11_38, and White_E9_3 functions provide additional examples of using

the m-file functions in this toolbox.
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Function equation Description

aasmaResidual (8) Evaluates equation (8) for use with a root-finding procedure for
finding Ma as a function of A/A∗.

MYO_11_38 N.A. Computations used in solution to problem 11.38 in Munson,
Young and Okiishi.

isenAAs (4) Area ratio A/A∗ for isentropic compressible flow

isenMaaas N.A. Ma as a function of area ratio A/A∗ for isentropic compressible
flow. Computing Ma requires a root-finding procedure so the
equation for A/A∗ as a function ofMa cannot be written explicitly.
isenMaas uses the built-in fzero function and the aasmaResidual
function to find the value of A/A∗ that gives f(A/A∗) = 0 in
equation (8).

isenMapp0 (5) Ma as a function of pressure ratio p/p0 for isentropic compressible
flow

isenMarr0 (7) Ma as a function of density ratio ρ/ρ0 for isentropic compressible
flow

isenMaTT0 (6) Ma as a function of temperature ratio T/T0 for isentropic com-
pressible flow

isenpp0 (1) Pressure ratio p/p0 for isentropic compressible flow

isenrr0 (3) Density ratio ρ/ρ0 for isentropic compressible flow

isenTT0 (2) Temperature ratio T/T0 for isentropic compressible flow

testIsenProps N.A. Test all routines in this toolbox

White_E9_3 N.A. Computations used in Example 9.3 in White.

Table 1: Functions for computing isentropic flow properties for one-dimensional compressible flow
of an ideal gas.
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