Arduino Programming
Part 5: Functions Redux
and Intro to Arrays

EAS 199B,Winter 2010

Gerald Recktenwald
Portland State University
gerry@me.pdx.edu

Goals

Create functions for reading the conductivity sensor
% Only one function is needed (only one used at a time)
+ Different functions have different features
% Change input data handling by using different functions
% Main program stays largely unchanged

Introduction to arrays
% Use arrays to store readings

% Compute average and standard deviation of the readings

Measuring salinity

. : 5V
Principle of operation T
<]
% lons migrate to electrodes | ko =
% lons exchange electrons with _ |
. anode — oxidation cathode — reduction
probes, causing current flow. floss of electrons) | Y| (qain of electrons)
+ Na+ is a spectator ion. e'@ @
. o
% lon concentrations increase (@) (@
at electrodes when power is T'\@ by @@ e-\>¢ Jo
left on. A (o)
©. 29| o @/@
% Therefore, only turn on ﬁ‘
9“ 10N Mig ratlon
power during the time when (&) @
reading is made. Leave it off (@)
OtherWise. @ Na* is a spectator ion

Measuring salinity

Sensor circuit 5V
+ It’s a voltage divider
+ Resistance .dec.reases as salt < Salinty sensor
concentration increases (acts like variable resistor)

% Voltage across fixed resistor
increases when sensor resistance

decreases, i.e. when salt @—@a Analog input

concentration increases

10 kQ

Study Questions

What is the voltage on the input pin for each of these
conditions:

< |f the electrical resistance of the water is zero?
<+ |If the electrical resistance of the water is 10k()?

<+ |f the electrical resistance of the water is 00?

What is the input reading for each of those conditions?

IF the resistance varied linearly with 5V

salinity, would the voltage vary __salinty sensor
Iinearl)’ Wlth Sa||n|t)’7 (acts like variable resistor)

@——@a Analog input

§1OKQ

Programs for Reading the Salinity Sensor

|. Read one value at a time

% Encapsulate the code in a function so it can be reused

2. Read multiple values and return an average

<+ Code in a new function

3. Read multiple values and return average and standard
deviation
* Yet another function
% Use an array to store readings, then compute statistics
% Returning two values requires pointers

All three programs use the same circuit

Measuring salinity

Measurement algorithm 5\/

% Turn on the power by applying 5V to

the voltage divider < Salinty sensor

% WVait for voltage transient to settle (acts like variable resistor)
+ Read the voltage across fixed resistor

% Turn off the power

@——@a Analog input

10 kQ

Single reading of conductivity sensor

int power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);

pinMode (power pin, OUTPUT);
}

void loop()
{

int input pin = 2; // Analog input pin

int reading;

digitalWrite(power pin, HIGH);
delay(100);

reading = analogRead(input pin);
digitalWrite(power pin, LOW);

Serial.println(reading);

//
//
//
//

S5V

<« Salinty sensor
(acts like variable resistor)

@——@a Analog input

§1OKQ

Turn on sensor
wait to settle
Measure voltage
Turn off power

Create a function to read the sensor

Why use functions?

% Code in the loop function is just high level commands
» Overall logic is easier to read and change
» Reduce likelihood of error as overall code logic changes
% Keep details of sensor-reading contained in the function

» Variables defined in the function are “local”

» Details can change, e.g. to increase speed or reduce memory usage
without changing the logic of the main function.

» Reuse the code in other projects: build a library of reusable components

Use a function to make a single reading

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);
pinMode (power pin, OUTPUT);

}

void loop()

{
int salinity input pin = 2; // Analog input pin
int salinity;

salinity = salinity reading(salinity power pin, salinity input pin);
Serial.println(salinity);

}
S —

int salinity reading(int power pin, int input pin) {

int reading;

digitalWrite(power pin, HIGH); // Turn on the sensor
delay(100); // Wait to settle
reading = analogRead(input pin); // Read voltage
digitalWrite(power pin, LOW); // Turn off the sensor

return reading;

Encapsulate single reading in a function

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);
pinMode (power pin, OUTPUT);

}

void loop()

{
int salinity input pin = 2; // Analog input pin
int salinity;

salinity = salinity reading(salinity power pin, salinity input pin);
Serial.println(salinity);
; Local variables power_pin

R Ay A) AP
int salinity reading(int power pin, int input pin) { gnqlnpug_PWIemecnﬂy
inside salinity_reading

int reading;

digitalWrite(power mpin, HIGH); // Turn on the sensor
delay(100); // Wait to settle
reading = analogRegd(input pin); // Read voltage
digitalWrite(power pin, LOW); // Turn off the sensor

return reading;

Encapsulate single reading in a function

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);
pinMode (power pin, OUTPUT);

}

void loop()
{

int salinity input pin = 2; // Analog input pin
int salinity;

salinity = salinity reading(salinity power pin, salinity input pin);
Serial.println(salinity);

Value of the local variable
called “reading” is returned

int salinity reading(int power pin, int input pin) { .)
and stored in the variable

int reading; caHed“saHnny
digitalWrite(power pin, HIGH); // Turn on the sensor

delay(100); // Wait to settle

reading = analogRead(input pin); // Read voltage

digitalWrite(power pin, LOW); // Turn off the sensor
return

Improve the function: Average several readings

Average is a measure of central tendency

:%Z

670 672 674 676 678 680

Improve the function: Compute standard deviation

Standard deviation is a measure of spread

n
~ 1
Q?Z—E X,
n -
1=1

o = 0.902

670 672 674 676 678 680

First improvement: Average several readings
This loop() function does not need to know the details

int salinity power pin = 4; // Digital I/O pin, Global variable

void setup()

{
Serial.begin(9600);
pinMode (power pin, OUTPUT);
}
void loop()
{
int salinity input pin = 2; // Analog input pin
int nave = 20; // Number of readings to average
float salinity; // Float stores fractional reading from computed average

salinity = salinity reading average(salinity power pin, salinity input pin, nave);
Serial.println(salinity);

First improvement: Average several readings
Details are hidden in read_salinity_average

float salinity reading average(int power pin, int input pin, int nave) {

int il ;
float reading, sum; // Use floats for more precision and to prevent overflow of sum

sum = 0.0;

for (i=1; i<=nave; i++) {
digitalWrite(power pin, HIGH); // Supply power to the sensor
delay(100); // Wait for sensor to settle
sum += analogRead(input pin); // Add reading to the running sum
digitalWrite(power pin, LOW); // Turn off power to the sensor
delay(10); // wait between readings

}

reading = sum/float(nave);
return reading;

Compute average and standard deviation

Code is more complex
% C functions can only “return” one value
% C functions can modify inputs that are passed by address
% The address of a variable is its location in memory
% The address can be assigned to another variable called a pointer

% Pointers are challenging for the beginner

A simple example of pointers

Pass the value of x into the function |

void loop() {
Pass the address of y into the function |

int x = 2;
int y; /

change value(x, &y);

}

void change value(int a, int *b) {

*ph = z*a;

}

A simple example of pointers

Pass the value of x into the function |

void loop() {

int x = 2;
int y; /

change value(x, &y);

y *b is the pointer to (the address of)
the second input argument

Pass the address of y into the function |

void change value(int a, int *b) {

*ph = z*a;

N\

change what is stored in *b

A simple example of pointers

Pass the value of x into the function |

void loop() {

int x = 2;
int y; /

change_value(x, &y); *b is the pointer to (the address of)

Pass the address of y into the function |

} :
the second input argument

/] == f o

void change value(int a, int *b) { Note: change value
does not return a value — its

*b = 2*a; . .

; return type is void. When
change value(x,&y) is
executed, the value stored in y

change what is stored in *b | is changed.

Compute average and standard deviation

void salinity reading stats(int power pin, int input pin, int nave, float *ave, float *stdev) {

int i, n;

float sum; // Use a float to prevent overflow

float reading[BUFFER LENGTH]; // Array to store readings

n = min(nave, BUFFER LENGTH); // Make sure we don't over-run the data buffer

// -- Store readings in an array

for (i=0; i<n; i++) { // First array index is 0, last is n-1
digitalWrite(power pin, HIGH); // Supply power to the sensor
delay(100); // Wait for sensor to settle
reading[i] = analogRead(input pin); // Add reading to the running sum
digitalWrite(power pin, LOW); // Turn off power to the sensor
delay(10); // wait between readings

}

// -- Compute average and standard deviation.

for (sum=0.0, i=0; i<n; i++) {
sum += reading[i];

}

*ave = sum/float(nave);

for (sum=0.0, i=0; i<n; i++) {
sum += pow(reading[i] - *ave, 2);

}
*stdev = sqgrt(sum/float(n-1));

Use salinity reading stats

int salinity power pin = 4; // Digital I/O pin

#define BUFFER_LENGTH 100 // Size of array to store readings for computation of ave and stdev

// Reduce BUFFER LENGTH to save memory if statistics are OK
// with smaller sample size

void setup()

{

}

void loop()

{

Serial.begin(9600);

pinMode(salinity power pin, OUTPUT); Pass the address Of ave

and address of stdev

int salinity input pin = 2;
int nave = 20;
float ave, stdev;

salinity reading stats(salinity power pin, salinity input pin, nave, &ave, &stdev);

Serial.print(ave); Serial.print(", "); Serial.println(stdev);

—>

Use ave and stdev
as hormal variables

Learning C++ Pointers for REAL Dummies
http://alumni.cs.ucr.edu/~pdiloren/C++_Pointers/

