
10/28/13	

1	

ME 120: Arduino Programming

Arduino Programming Part II

ME 120
Mechanical and Materials Engineering

Portland State University
http://web.cecs.pdx.edu/~me120

Fall 2013	

ME 120: Arduino Programming

Overview

Review of Blink
Variable Declarations
Variable Assignments
Built-in I/O functions

See on-line reference:

 http://arduino.cc/en/Reference/HomePage

2

ME 120: Arduino Programming

Blink code

3

Declare led	

and assign a value	

Built-in functions:	

 pinMode
 digitalWrite
 delay	

10/28/13	

2	

ME 120: Arduino Programming

Variables in Arduino programs

4

ME 120: Arduino Programming

Using Variables and Functions

5

Assigning values to a variable: “int” is a type of variable
 int led = 12;

pinMode and digitalWrite expect “int” variables as inputs

 pinMode(led,OUTPUT);
 digitalWrite(led,HIGH);

OUTPUT and HIGH are pre-defined constants

 See http://arduino.cc/en/Reference/Constants

ME 120: Arduino Programming

Variable types

Three basic categories of variables
❖  integers
❖  floating point values
❖  character strings

Integers
❖  No fractional part. Examples: 1, 2, 23, 0, –50213
❖  Used for counting and return values from some built-in functions
❖  Integer arithmetic results in truncation to integers

Floating point numbers
❖  Non-zero fractional parts. Examples 1.234, –2.728, 4.329 x 10–4

❖  Large range of magnitudes
❖  Floating point arithmetic does not truncate, but has round-off

6

10/28/13	

3	

ME 120: Arduino Programming

Integer types

7

int integer in the range –32,768 to 32,767	

long integer in the range –2,147,483,648 to 2,147,483,647	

unsigned int positive integer in the range 0 to 65,535	

unsigned long positive integer in the range 0 to 4,294,967,295	

See http://arduino.cc/en/Reference/Int and	

http://arduino.cc/en/Reference/Long 	

–32768

–215 215 – 1

+32767

0

0

216 – 1

65535

int numberline

unsigned int numberline

ME 120: Arduino Programming

Floating point types

8

float values with approximately seven significant digits in the range
±(1.80 x10–38 to 3.40 x 1038)	

double values with approximately thirteen significant digits in the
range ±(2.2 x10–308 to 1.80 x 10308)	

	

There is no double on an Arduino Uno. On an Uno, a double
is the same as a float.	

See http://arduino.cc/en/Reference/Float	

and http://arduino.cc/en/Reference/Double	

ME 120: Arduino Programming

Declaring and assigning values

Declarations are necessary. Assignments are optional

Notes

❖  Integer values do not use decimal points
❖  Floating point values can use “e” notation

‣  1.23e5 is equal to 1.23 x 105
‣  DO NOT write x = 1.23*10^5 instead of x = 1.23e5

9
See http://arduino.cc/en/Reference/Float	

and http://arduino.cc/en/Reference/Double	

int n; // single declaration
int i,j,k,n; // multiple declaration
int i=5; // single declaration and assignment
int i=5, j=2; // multiple declaration and assignment

float x;
float x,y,z;
float x=0.0, y=-1.23e5; // assignment with ”e” notation

10/28/13	

4	

ME 120: Arduino Programming

Assigning values

The equals sign is the assignment operator
❖  The statement x = 3 assigns a value of 3 to x. The actual

operation involves storing the value 3 in the memory
location that is reserved for x.

❖  The equals sign does not mean that x and 3 are the same!
❖  Symbolically you can replace x = 3 with x ← 3.

Consider the following sequence of statements

The preceding statements are executed in sequence. The
last assignment determines the value stored in x. There is
no ambiguity in two “x = ” statements. The x = 5;
statement replaces the 3 stored in x with a new value, 5.

10

x = 3;
y = x;
x = 5;

ME 120: Arduino Programming

What are the values of n and z at the end of the following
sequences of statements?

Test your understanding

11

int i,j,k,n;

i = 2;
j = 3;
k = i + 2*j;
n = k – 5;

int i,j,k,n;

i = 2;
j = 3;
n = j – i;
n = n + 2;

int n;
float x,y,z;

x = 2.0;
y = 3.0;
z = y/x;
n = z;

n = ? n = ? z = ?
n = ?

ME 120: Arduino Programming

What are the values of n and z at the end of the following
sequences of statements?

The n = n + 2; statement shows why it is helpful to think of
the equal sign as a left facing arrow.
You can mentally replace n = n + 2; with n ← n + 2;

Test your understanding

12

int i,j,k,n;

i = 2;
j = 3;
k = i + 2*j;
n = k – 5;

int i,j,k,n;

i = 2;
j = 3;
n = j – i;
n = n + 2;

int n;
float x,y,z;

x = 2.0;
y = 3.0;
z = y/x;
n = z;

10/28/13	

5	

ME 120: Arduino Programming

Integer arithmetic
We have to be aware of the rules of numerical
computation used by Arduino hardware (and computers, in
general).

Integer arithmetic always produces integers

What values are stored in i and j?

13

int i,j;
i = (2/3)*4;
j = i + 2;

ME 120: Arduino Programming

Integer arithmetic
We have to be aware of the rules of numerical
computation used by Arduino hardware (and computers, in
general).

Integer arithmetic always produces integers

What values are stored in i and j?

 Answer: i ← 0, j ← 2

14

int i,j;
i = (2/3)*4;
j = i + 2;

ME 120: Arduino Programming

Integer arithmetic
Integer arithmetic always produces integers

What values are stored in i and j?

 Answer: i ← 2, j ← 4

15

int i,j;
i = (2.0/3.0)*4.0;
j = i + 2;

10/28/13	

6	

ME 120: Arduino Programming

Floating point arithmetic

Floating point arithmetic preserves the fractional part of
numbers, but it does so approximately

What values are stored in y and z?

16

float w,x,y,z;
w = 3.0;
x = 2.0;
y = w/x;
z = y – 1.5;

ME 120: Arduino Programming

Floating point arithmetic

Floating point arithmetic preserves the fractional part of
numbers, but it does so approximately

What values are stored in y and z?

 Answer: y ← 1.5, z ← 0

17

float w,x,y,z;
w = 3.0;
x = 2.0;
y = w/x;
z = y – 1.5;

ME 120: Arduino Programming

Floating point arithmetic

Consider this alternate test*

18

float w,x,y,z;
w = 4.0/3.0;
x = w - 1;
y = 3*x;
z = 1 - y;

*See, e.g. C. Moler, Numerical Computing in
MATLAB, 2004, SIAM, p. 38

10/28/13	

7	

ME 120: Arduino Programming

Floating point arithmetic

Consider this alternate test*

which produces x = 0.333 and y = 1.000 and z = –1.19e-7

19

float w,x,y,z;
w = 4.0/3.0;
x = w - 1;
y = 3*x;
z = 1 - y;

*See, e.g. C. Moler, Numerical Computing in
MATLAB, 2004, SIAM, p. 38

ME 120: Arduino Programming

Global and local variables

20

int LED_pin = 13;

void setup() {
 pinMode(LED_pin, OUTPUT);
}

void loop() {
 digitalWrite(LED_pin, HIGH);
 delay(1000);
 digitalWrite(LED_pin, LOW);
 delay(1000);
}

In this sketch, LED_pin is a global
variable, accessible to other functions in
the file	

void setup() {
 int LED_pin = 13;
 pinMode(LED_pin, OUTPUT);
}

void loop() {
 digitalWrite(LED_pin, HIGH);
 delay(1000);
 digitalWrite(LED_pin, LOW);
 delay(1000);
}

In this sketch, LED_pin is a local
variable in the setup function, and is not
accessible to the code in the loop
function. This sketch will not compile. It
cannot be run.	

In general, it is wise to avoid global variables unless you must. Since LED_pin must
be accessible to setup and loop, it has to be a global variable.	

ME 120: Arduino Programming

Built-in Arduino functions

21

10/28/13	

8	

ME 120: Arduino Programming

All sketches have setup() and loop()

void setup()
❖  Executed only once
❖  No input arguments: parentheses are empty
❖  No return values: function type is void

void loop()
❖  Executed repeatedly
❖  No input arguments: parenthesis are empty
❖  No return values: function type is void

22

ME 120: Arduino Programming

Digital input and output (1)

Digital I/O pins 0 through 13 can respond to input or be
sources of output

pinMode(pin, mode)

❖  Configures a digital I/O pin for input or output
❖  pin – specifyies the digital I/0 channel: 0 to 13
❖  mode – one of: INPUT, OUTPUT or INPUT_PULLUP

‣  we use OUTPUT to set the pin as a power source for an LED
‣  we use INPUT when we read a digital input, such as a button

❖  No return value: function type is void

23 See http://arduino.cc/en/PinMode 	

ME 120: Arduino Programming

Digital input and output (2)

digitalWrite(pin,value)
❖  Sets the state of a digital I/O pin
❖  pin – specifies the digital I/0 channel: 0 to 13
❖  value – one of: HIGH or LOW
❖  No return value: function type is void

digitalRead(pin)
❖  Reads the state of a digital I/O pin
❖  pin – specifies the digital I/0 channel: 0 to 13
❖  Returns and int that is equivalent to either LOW or HIGH

24

See http://arduino.cc/en/Reference/DigitalWrite 	

and http://arduino.cc/en/Reference/DigitalRead 	

and http://arduino.cc/en/Tutorial/DigitalPins 	

10/28/13	

9	

ME 120: Arduino Programming

Analog input

analogRead(pin)
❖  Reads the voltage on an analog input pin
❖  pin – an integer that specifies the analog input channel: 0 to 5.
pin can also be referred to by name as A0, A1, A2, A3, A4 or A5

❖  Returns an int in the range 0 to 1023 (for an Arduino Uno)

Example: Read a potentiometer

25 See http://arduino.cc/en/Reference/AnalogRead 	

void setup() {
 Serial.begin(9600);
}

void loop() {
 int reading;
 reading = analogRead(A0);
 Serial.println(reading);
}

Analog
input pin

5V

ME 120: Arduino Programming

Serial communication with host computer (1)

Serial.begin(speed)
❖  Initializes the Serial port at speed. Typical speed is 9600

Serial.print(value)
❖  Sends value to the serial port
❖  value can be a single number or a character string
❖  No newline after value is sent

Serial.println(value)
❖  Sends value to the serial port
❖  value can be a single number or a character string
❖  Add a newline after value is sent

26 See http://arduino.cc/en/Reference/AnalogRead 	

ME 120: Arduino Programming

Serial communication with host computer (2)

Example: Read two analog channels and print values

27 See http://arduino.cc/en/Reference/AnalogRead 	

void setup() {
 Serial.begin(9600); // Initialize serial port object
}

void loop() {
 int value1,value2;
 float now;

 now = millis()/1000.0; // Current time in seconds
 value1 = analogRead(A0); // Read analog input channel 0
 value2 = analogRead(A1); // and channel 1

 Serial.print(now); // Print the time
 Serial.print(” ”); // Make a horizontal space
 Serial.print(value1); // Print the first reading
 Serial.print(” ”); // Make another horizontal space
 Serial.println(value2); // Print second reading & newline
}

10/28/13	

10	

ME 120: Arduino Programming

Codes to demonstrate integer
and floating point arithmetic

28

ME 120: Arduino Programming

Integer arithmetic

29

// File: int_test.ino
//
// Demonstrate truncation with integer arithmetic
// ME 120, Lecture 5, Fall 2013

void setup() {
 int i,j;

 Serial.begin(9600);
 delay(3500); // wait for user to open the serial monitor

 // -- First example: slide #13
 i = (2/3)*4;
 j = i + 2;
 Serial.println("First test");
 Serial.print(i); Serial.print(" "); Serial.println(j);

 // -- Second example: slide #15
 i = (2.0/3.0)*4.0;
 j = i + 2;
 Serial.println("Second test");
 Serial.print(i); Serial.print(" "); Serial.println(j);
}

void loop() {} // Loop does nothing. Code in setup() is executed only once

ME 120: Arduino Programming

Floating point arithmetic: test 1

30

// File: float_test.ino
//
// Demonstrate floating point arithmetic computations that happen to
// have no obvious rounding errors. That DOES NOT always happen
//
// Use two-parameter form of Serial.print. The second parameter specifies
// the number of digits in value sent to the Serial Monitor

void setup() {
 float w,x,y,z;

 Serial.begin(9600);
 delay(2500); // wait for user to open the serial monitor

 // -- Computations that return results that you would expect; No rounding
 w = 3.0;
 x = 2.0;
 y = w/x;
 z = y - 1.5;
 Serial.println("Floating point arithmetic test");
 Serial.print(w,8); Serial.print(" ");
 Serial.print(x,8); Serial.print(" ");
 Serial.print(y,8); Serial.print(" ");
 Serial.print(z,8); Serial.print(" ");
 Serial.println(z*1.0e7,8);
}

void loop() {} // Loop does nothing. Code in setup() is executed only once

10/28/13	

11	

ME 120: Arduino Programming

Floating point arithmetic: test 2

31

// File: float_test_2.ino
//
// Demonstrate well-known round-off error problem with floating point arithmetic
// See, e.g., Cleve Moler, Numerical Computing in MATLAB, p. 38
//
// Use two-parameter form of Serial.print. The second parameter specifies
// the number of digits in value sent to the Serial Monitor

void setup() {
 float w,x,y,z;

 Serial.begin(9600);
 delay(2500); // wait for user to open the serial monitor

 // -- Computations that show rounding
 w = 4.0/3.0;
 x = w - 1;
 y = 3*x;
 z = 1 - y;
 Serial.println("\nFloating point arithmetic test 2");
 Serial.print(w,8); Serial.print(" ");
 Serial.print(x,8); Serial.print(" ");
 Serial.print(y,8); Serial.print(" ");
 Serial.print(z,8); Serial.print(" ");
 Serial.println(z*1.0e7,8);
}

void loop() {} // Loop does nothing. Code in setup() is executed only once

