EAS 199 Arduino Programs for a Breathing LED
Fall 2011 Gerald Recktenwald

v: October 20, 2011 gerry@me.pdx.edu

1 Goal: A Breathing LED Indicator

When the lid of an Apple Macintosh laptop is closed, an LED indicator light pulses with the rhythm
of human breathing. On December 2, 2003, Apple was awarded US Patent number 6,658,577 for
an Breathing status LED indicator. The goal of this exercise is to develop an Arduino program to
imitate the Apple LED indicator.

1.1 Learning Objectives

These notes present a series of Arduino programming snippets that implement aspects of the breath-
ing LED. The programs start simple and become more complex. The first program creates a re-
peating pattern of three constant brightness levels. Alternative methods of obtaining the constant
brightness levels are presented. Next, the lightness level is varied linearly during the inhale and
exhale portions of the breathing pattern. Your are expected to make the final modifications to
produce a nonlinear variation during the inhale and exhale portions.

The learning objectives for this exercise are

1. Be able to use the analogWrite and delay functions to create a repeating pattern of three
constant LED brightness levels.

2. Be able to use loop structures to achieve the same repeating pattern of three constant LED
brightness levels.

3. Be able use loop structures to create a repeating pattern of linearly increasing, constant, and
linearly decreasing LED brightness levels.

4. Be able to use a single loop structure and if statements to achieve the same pattern of linearly
increasing, constant, and linearly decreasing intensity.

As a bonus objective for students rapidly progressing through the material

5. Be able to use the millis command to more precisely control the timing of the linearly varying
pattern of LED brightness patterns.

These goals reflect the larger objective of learning programming patterns with the Arduino plat-
form. Furthermore, by achieving these objectives, students will be well-prepared to complete the
assignment of achieving a breathing LED that varies in a more natural pattern than the constant
levels (objectives 1 and 2) or linearly varying levels (objectives 3 and 4).

Following the exercises will give you a series of codes of increasing complexity. We strongly rec-
ommend that you save each code as a separate sketch rather than continuously modifying the same
sketch. By saving the code you will be able to revisit these notes and study your own intermediate
steps. You will also have working code to revert to if, as you add new features, you find yourself
with a severely broken code. In that case you can discard broken code and start over from an earlier,
saved version.

These exercises presume that you already understand

e Basic Arduino program structure

EAS 199 :: Code for the Breathing LED

Syntax of for loops and while loops

Syntax of if constructs

Use of PWM to control an LED

1.2 Pattern of the Breathing LED

The diagram to the right represents the pattern
of light intensity for the final implementation of
the Arduino program. The breathing pattern has
three phases: inhale, pause, and exhale. The in-
hale and exhale phases are modeled with expo-
nentially increasing and exponentially decreasing
functions of time. The pattern repeats every t3—tg
units of time. The inhale phase ends at ¢1, and the
exhale phase begins at to.

1.3 Circuit for the Breathing LED

The circuit for this project is depicted in the
sketch to the right. One of the PWM output pins
(digital outputs 3, 5, 6, 9, 10 or 11 on an Arduino
Uno or Duemilanove) is connected to the LED,
which is tied to ground by a current-limiting resis-
tor. The resistor can be between 330 2 and 10 kS2.
Smaller resistors result in a brighter LED for a
given PWM output.

2 Constant Brightness Levels

To establish a starting code structure, and to ver-
ify that the electrical circuit is working correctly,
we first develop a very simple code that uses the
delay function to control the duration of a con-
stant brightness level. As depicted in the figure to
the right, the light intensity of the LED changes
from Vi, to V, and then to Ve during each cycle.

The value of V' can be thought of as a voltage.
However, for convenience we never convert the V'
values to voltage. Instead, we use the 8-bit scale
(0 <V < 255) of the PWM output channel.

How to build a circuit for blinking an LED with Arduino

Inhale Pause Exhale
ViaxT bt /11 bext
Vin = @in€ " } } Vex = Uex€ ™
I
| |
| |
| |
I
Lo
| |
Vmin) } } ;
L 1
I
Iy I h I
Digital
output
.4
\Visd
Inhale Pause Exhale
V. + —e
3 } |
I
| |
I
L
| |
Vio 4o
| |
Vo T | .
e L i
L 1
I
ly L h 2]

EAS 199 :: Code for the Breathing LED

2.1 Basic Timing with the delay Function

To implement the three step brightness pattern, enter the
code to the right in the loop function of an Arduino sketch.
The three brightness levels mark the three phases of the
breath cycle, and are only meant to establish the proper
timing. The PWM outputs for those three phases have the
arbitrary numerical values Vin, Vpause, and Vex.

You should experiment with the values of Vin, Vpause,
and Vex to develop a feel for the brightness levels obtained
with different values of the PWM duty cycle. The perceived
brightness is not linearly related to the value of the duty
cycle.

int Vin = ...;
int Vpause = ...;
int Vex = ...;

analogWrite (LED_pin, Vin);
delay (2000) ;

analogWrite (LED_pin, Vpause);
delay(500) ;

analogWrite(LED_pin, Vex);
delay (2500) ;

Note that the values of Vin, Vpause, and Vex must be in the range 0 < V < 255 because the
second argument of the analogWrite function is an 8-bit value. The argument of the delay function

is the time to pause in milliseconds.

2.2 Alternative Timing with Loops

The next step is to rewrite the LED_three_levels sketch so that the timing for each phase of LED
brightness is controlled by a loop that repeatedly calls the analogWrite and delay function a
pre-determined number of times. This alternative version of the code does not yield an immediate
benefit — the LED_three_levels code is actually simpler — but it sets the stage for more complex
control of the LED brightness pattern.

If the time delay for each phase of the brightness pattern is contained in a loop, the total duration
of each phase is approximately equal to the product of time delay per loop and the number of loop
repetitions.

Number of
loop repetitions

Time duration __ Time delay
per phase = per loop

The approximate equality is due to the nonzero time taken by other operations in the loop. The
actual time taken for execution of each loop will be greater than the time spent waiting for the

delay(dtwait) function to execute.

To implement the loop-based delay, enter the code to
the right in the 1loop function of an Arduino sketch. dtwait
is the time delay added to each loop. nin, npause and nex
are the number of loop repetitions for the inhale, pause, and
exhale phases, respectively.

Inexperienced Arduino programmers can be confused by
the use of loops inside the loop function. First, remem-
ber that loops can be contained inside of other loops, so
the loops inside the loop function are perfectly normal pro-
gramming practice. Second, the loop function is not really
a loop anyway, it is just a function with the name “loop”.
The loop function is the heartbeat of any Arduino sketch.
The loop function is repeated continuously until either the
reset button is pushed or the power to the board is removed.

int dtwait = 500;
int i, nin=4, npause=1, nex=5;

for (i=1; i<=nin; i++) {
analogWrite (LED_pin, Vin);
delay(dtwait);

}

for (i=1; i<=npause; i++) {
analogWrite (LED_pin, Vpause);
delay(dtwait);

}

for (i=1; i<=nex; i++) {
analogWrite (LED_pin, Vex);
delay(dtwait) ;

}

Many combinations of the time delay per loop and number of loop repetitions are feasible. For

EAS 199 :: Code for the Breathing LED 4

example, the inhale phase can be achieved by either of these two combinations.
400 millisecond delay x 5 loop repetitions ~ 2000 milliseconds

5 millisecond delay x 400 loop repetitions ~ 2000 milliseconds

What happens when the timing constants are defined as follows:

int dtwait = 5;

int i, nin=400, npause=100, nex=500;
Answer: There is no perceptible change in the brightness pattern for the three constant brightness
levels. However, for other intensity versus time functions, we want the inner loops to execute quickly
so that the LED level is updated more frequently. In other words, a small value of dtwait and
correspondingly larger values of nin, npause, and nex allow for faster updates to the voltage output,
and hence a smoother variation in brightness as a function of time.

3 Linear Ramps for Intensity Levels

We now introduce linear variation of PWM out-
put during the inhale and exhale phases of the
breathing pattern. The brightness of the LED
will increase and decrease, but the intensity pat-
tern is not quite as organic as breathing. However,
once the programming pattern is established with
linearly increasing and linearly decreasing PWM
output, it is relatively simple to replace the linear
functions with other time varying functions.

The figure to the right shows the shape of the
PWM output curve for linearly varying inhale and

Inhale Pause Exhale

exhale phases. The magnitudes of the PWM out- o ho b £
put are specified with only two parameters, Vmin
and Vmax. Remember that
The equations for the inhale and exhale output are
V = aint + bin UV = Goutt + bout (1)

where v is the value sent to the PWM output, a;, and b;, are the slope and intercept of the inhale
function, and aex and beyx are the slope and intercept of the exhale function. Remember that the
values used in the analogWrite function must be limited to the range 0 < v < 255.

EAS 199 :: Code for the Breathing LED

3.1 Implementation with Separate Loops

A linear variation in PWM output to the LED can be implemented by modifying the code from
Section 2.2. The simplest solution is to use separate loops for the inhale, pause and exhale phases.
After showing how to use that solution with separate loops, an improved version of the code is

developed, one that uses only a single loop.

The code except at the right shows the
basic ideas. A complete sketch called
LED_linear_levels.pde is given in Sec-
tion 5 at the end of this document

The ain and bin coefficients are the slope
and intercept of the PMW output function
for the inhale phase. aex and bex are the
slope and intercept for the exhale phase.
The values of these coefficients are specified
by the user. In the code to the right, the
user-supplied values are represented by
These are placeholders and the sketch will
not compile if you literally enter ... into
the code.

// Slopes and intercepts of ramps

double ain, bin, aex, bex;
double dt, t;

int v;

ain = ; // Slope of inhale curve
bin = ;

aex = ; //

bex = ;

t = 0.0;

for (i=1; i<=nin; i++) {
t += dt;
v = int(ain*t + bin);
analogWrite(LED_pin, v);
delay(dtwait);

}

for (i=1; i<=npause; i++) {
analogWrite (LED_pin, Vpause);
delay(dtwait);

}

for (i=1; i<=nex; i++) {
t += dt;
v = int(aex*t + bex);
analogWrite(LED_pin, v);
delay(dtwait);

}

3.2 Alternative Implementation with a Single Loop

The use of three separate loops is clumsy. The code can be refactored so that there is a single
loop for the inhale-pause-exhale cycle. Instead of counting cycles, the appropriate PWM output
function is selected by comparing the time (computed from the loop counter) to the times at which

the output functions change.

// Intercept for inhale curve
Slope of exhale curve
// Intercept for exhale curve

EAS 199 :: Code for the Breathing LED 6

The code excerpt at the right shows how

the two linear ramps can be evaluated in int nstep = ...;

. double t1 = ...;
a single loop. A complete sketch called double t2 = ;
LED_linear_levels_if.pde is given in Sec- double dt = ;

tion 5 at the end of this document
Note that the PWM output function is

for (i=1; i<=nstep; i++) {

t = ixdt;
called only once at the end of the if...else if (<= t1) {
structure. In other words, the only purpose v = int(ain*t + bin);
of the if...else structure is to specify the }oelse if (t <=1t2) {

. . V = Vvpause;
correct value of v depending on the time. b else {
v = int(aex*t + bex);

}

analogWrite (LED_pin, Vpause);

delay(dt);

}

3.3 Alternative Implementation with the fade Example

The standard Arduino installation includes the Fade.pde sketch which provides a PWM output in
the form of a slow triangle wave. If the output of the Fade sketch is connected to an LED, the
brightness of an LED will increase and decrease indefinitely. To view the code, make the following
menu selections from an open Arduino window

File — Examples — Basics — Fade

3.4 Alternative Implementation with millis

The preceding Arduino programs use the delay function to control the timing of the breathing
LED algorithm. For some applications, more precise control of time is necessary. In this section
the millis function is introduced to control the timing of the breathing LED. The precision is not
necessary, but using millis to measure the time does not introduce substantial complexity.

Advantages of measuring time instead of using delay:

e No need to figure out the values of delay to achieve a desired timing of the program.

e Elimination of the error in timing due to execution of other program steps.

Disadvantages:

e Code is slightly more complex

e There is a potential subtle problem: millis() rolls over every 50 days (7). This can be
overcome with a simple hack: test for t < 0

The key advantage of using the on-board clock is that it makes timing of the breathing compu-
tations independent of any other operations you may wish to have the Arduino perform. This also
makes the breathing computations work without changes on any Arduino platform, regardless of
the clock speed.

EAS 199 :: Code for the Breathing LED

The code excerpt at the right shows
how to read the on-board clock with the
millis function, and how to wuse that
time value to set the pace of the breath-
ing algorithm. A complete sketch called
LED_linear_levels_millis.pde is given in
Section 5 at the end of this document

Note that a while loop is used instead of
a for loop. This is more than a question of
style. The while loop is more natural when
the timing is not controlled by inserting calles
to delay(dt). The stopping condition in the
while loop does not keep track of the number
of time steps. Rather, the stopping condition
in the while statement uses the current value
of t, however that value is obtained. In this
code, the value of t is determined by reading
the on-board clock.

int v;
unsigned long t, tstart;

// save tstart so that t = millis() - tstart
// 1is zero at beginning of loop function
tstart = millis();

t = 0;

while (t < tcycle) {

if (t <= dtin) {
v = int(ain*t + bin);
} else if (t <=1t2) {
v = Vmax;
} else {
v = int(aex*t + bex);

analogWrite (LED_pin, v);

// Get ready for next pass through loop
t = millis() - tstart;

if (t<0) break; // Fix roll-over

4 Non-linear Variation During Inhale and Exhale

To create a more brightness pattern that is more natural, replace the linear ramps in intensity with
other functions. For example, in an earlier lecture the following functions were fit to the inhale and

exhale phases.

Vin = aine”™’

It is relatively straightforward to replace the linear segments with these or other formulas for PWM

output versus time.

Vex = aexebQXt

EAS 199 :: Code for the Breathing LED 8

5 Answers

The following code listings show the complete Arduino sketches for the exercises described in the
preceding sections.

Table 1: List of Arduino sketches for demonstrating aspects of the breathing LED code.

Arduino Code Description

LED_three_levels.pde Pattern of three constant brightness levels with the
duration controlled by the delay function.

LED_three_level_loops.pde Pattern of three constant brightness levels with the
duration controlled by for loops and short time de-
lays with the delay function.

LED_three_level_loops_alt.pde Same as LED_three_level_loops.pde except for al-
ternative timing variables.

LED_linear_levels.pde PWM output to the LED is linearly increasing dur-
ing inhale and linearly decreasing during exhale.

LED_linear_ levels_if.pde Same as LED_linear_levels.pde except that the
three phases are executed within a single loop in-
stead of three separate loops. The phases are de-
termined by checking the time in an if...else if
code structure.

LED linear_levels_if global.pde Same as LED_linear_levels_if.pde except that pa-
rameters controlling the shape of the brightness func-
tion are global variables that are computed only
once, instead of redundantly being computed on each
pass through the loop function.

LED linear levels millis.pde Use the millis function to read the in-
ternal clock to control timing of the three
phases. Retain the use of global variables from
LED_linear_levels_if_global.pde. All timing
parameters are now in milliseconds.

EAS 199 :: Code for the Breathing LED

vo

}

Vo

File: LED_three_levels.pde

Use PWM to control the brightness of an LED
Repeat a pattern of three brightness levels

Gerald Recktenwald, gerry@me.pdx.edu, 20 August 2011

int LED_pin = 11;

id setup() {

pinMode (LED_pin, OUTPUT);

id loop() {

int Vin=20, Vpause=220, Vex=80;

analogWrite (LED_pin, Vin);
delay (2000) ;

analogWrite (LED_pin, Vpause);
delay(500) ;

analogWrite(LED_pin, Vex);
delay(2500) ;

// Use pin 3, 5, 6, 9, 10 or 11 for PWM

/7

//

Initialize pin for output

8-bit output values for PWM duty cycle

Inhale

Pause

Exhale

EAS 199 :: Code for the Breathing LED

// File: LED_three_level_loops.pde
// Use PWM to control the brightness of an LED.
// Repeat a pattern of three brightness levels where the time delay
// for each brightness is controlled by a loop.
// Gerald Recktenwald, gerry@me.pdx.edu, 20 August 2011
int LED_pin = 11; // must be one of 3, 5, 6, 9, 10 or 11
void setup() {
pinMode (LED_pin, OUTPUT); // Initialize pin for output
}
void loop() {
int dtwait=500; // Time delay during each loop

int i, nin=4, npause=1, nex=5; // Index (i) and number of repetitions for each loop
int Vin=20, Vpause=220, Vex=80; // 8-bit output values for PWM duty cycle

for (i=1; i<=nin; i++) { // Inhale
analogWrite (LED_pin, Vin);
delay(dtwait);

}

for (i=1; i<=npause; i++) { // Pause
analogWrite(LED_pin, Vpause);
delay(dtwait);

}

for (i=1; i<=nex; i++) { // Exhale
analogWrite(LED_pin, Vex);
delay(dtwait) ;

}

}

EAS 199 :: Code for the Breathing LED

11

File:

LED_three_level_loops_alt.pde

// Use PWM to control the brightness of an LED.
// Repeat a pattern of three brightness levels where the time delay
// for each brightness is controlled by a loop. Alternate timing version

// Gerald Recktenwald, gerry®@me.pdx.edu,

int LED_pin = 11;
void setup() {

}

void loop() {

int dtwait=b;

delay(dtwait) ;
}

delay(dtwait) ;
}

// must be one of 3, 5, 6, 9, 10 or 11
pinMode (LED_pin, OUTPUT); // Initialize pin for output
// Time delay during each loop
int i, nin=400, npause=100, nex=500; // 1Index (i) and number of repetitions for each loop
int Vin=20, Vpause=220, Vex=80; // 8-bit output values for PWM duty cycle
for (i=1; i<=nin; i++) { // Inhale
analogWrite (LED_pin, Vin);
for (i=1; i<=npause; i++) { // Pause
analogWrite (LED_pin, Vpause);
for (i=1; i<=nex; i++) { // Exhale

analogWrite (LED_pin, Vex);
delay(dtwait);
}
}

20 August 2011

EAS 199 :: Code for the Breathing LED

12

int

}

File: LED_linear_levels.pde

Use PWM to control the brightness of an LED.

Pattern is a linear ramp up to a constant, followed by a linear decrease
back to the starting intensity. Repeat indefinitely. Timing for each
phase is obtained with a separate loop. Timing is imprecise because the
use of loop delays ignores time spent executing commands other than delay()

Gerald Recktenwald, gerry@me.pdx.edu, 20 August 2011

LED_pin = 11; // must be one of 3, 5, 6, 9, 10 or 11

void setup() {
pinMode (LED_pin, OUTPUT); // Initialize pin for output

void loop() {

int i, nin, npause, nex, dtwait; // Index, repetitions for each loop, and loop delay
int v, Vmin=20, Vmax=220; // PWM output (v) and min and max values of ramps
double ain, bin, aex, bex; // Slopes and intercepts of linear output functions

double dt, dtin, dtpause, dtex, t; // Timing parameters

dt = 0.01; // Time step (seconds) don’t make this smaller than 10 msec
dtwait = dt*1000; // Loop delay (milliseconds) corresponding to dt

dtin = 2.0; // Time interval for inhale (seconds)

dtpause = 0.5; // Time interval for pause after inhale (seconds)

dtex = 2.5; // Time intervalfor exhale (seconds)

nin = int(dtin/dt); // Number of time steps during inhale

npause = int(dtpause/dt); // Number of time steps during pause

nex = int(dtex/dt); // Number of time steps during exhale

// -- Use other time interval and range parameters to compute slopes and intercepts of v(t)
ain = double(Vmax - Vmin)/dtin; // Slope during inhale

bin = double(Vmin); // Intercept during inhale

aex = double(Vmin - Vmax)/dtex; // Slope during exhale

bex = double(Vmax) - aex*(dtin + dtpause); // Intercept during exhale

= 0.0;

for (i=1; i<=nin; i++) { // Inhale

t += dt;
v = int(ain*t + bin);
analogWrite (LED_pin, v);

delay(dtwait) ;

}

for (i=1; i<=npause; i++) { // Pause
t += dt;
analogWrite (LED_pin, Vmax);
delay(dtwait) ;

}

for (i=1; i<=nex; i++) { // Exhale
t += dt;

v = int(aex*t + bex);
analogWrite (LED_pin, v);
delay(dtwait);

EAS 199 :: Code for the Breathing LED

13

vo

}

//

vo

Pattern is a linear ramp up to a constant, followed by a linear decrease

Repeat indefinitely.

Timing is controlled

Switching between phases is determined with "if" statements

Timing is still imprecise because the

use of loop delays ignores time spent executing commands other than delay()

id setup() {
pinMode (LED_pin, OUTPUT);

id loop() {

int i, ncycle, dtwait;

int v, Vmin=20, Vmax=220;

double ain, bin, aex, bex;

double dt, dtin, dtpause, dtex, t, t3;

20 August 2011

// must be one of 3, 5, 6, 9, 10 or 11

// File: LED_linear_levels_if.pde

//

// Use PWM to control the brightness of an LED.
//

// back to the starting intensity.

// by a single loop.

// that check the current (estimate of) time.
//

//

// Gerald Recktenwald, gerry@me.pdx.edu,

int LED_pin = 11;

/] —mmmmmmmme -

// Initialize pin for output

Index, total steps for all three phases, loop delay
PWM output (v) and min and max values of ramps
Slopes and intercepts of linear output functions
Timing parameters

dt = 0.01; // Time step (seconds). Should be >= 10 milliseconds
dtwait = dt*1000; // Loop delay (milliseconds) corresponding to dt
dtin = 2.0; // Time interval for inhale (seconds)
dtpause = 0.5; // Time interval for pause after inhale (seconds)
dtex = 2.5; // Time intervalfor exhale (seconds)
t3 = dtin + dtpause; // Time at end of the pause (seconds)
ncycle = (dtin + dtpause + dtex) / dt; // Total time steps in a cycle
// -- Use other time interval and range parameters to compute slopes and intercepts of v(t)
ain = double(Vmax - Vmin)/dtin; // Slope during inhale
bin = double(Vmin) ; // Intercept during inhale
aex = double(Vmin - Vmax)/dtex; // Slope during exhale
bex = double(Vmax) - aex*t3; // Intercept during exhale
t = 0.0;
for (i=1; i<=ncycle; i++) {
t += dt;
if (t <= dtin) {
v = int(ain*t + bin); // Inhale
} else if (t <=t3) {
v = Vmax; // Pause
} else {
v = int(aex*t + bex); // Exhale
}
analogWrite (LED_pin, v);
delay(dtwait);
}

EAS 199 :: Code for the Breathing LED

14

// File: LED_linear_levels_if_global.pde

// Use PWM to control the brightness of an LED.

// Pattern is a linear ramp up to a constant, followed by a linear decrease

// back to the starting intensity. Repeat indefinitely. Timing is controlled

// by a single loop. Switching between phases is determined with "if" statements

// that check the current (estimate of) time. Timing is still imprecise because the
// use of loop delays ignores time spent executing commands other than delay().

// Timing and ramp parameters are declared as gobal variables so they can be computed
// once at startup. This removes unecessary computation from the loop function.

// Gerald Recktenwald, gerry@me.pdx.edu, 20 August 2011
int LED_pin = 11; // must be one of 3, 5, 6, 9, 10 or 11

int Vmin=20, Vmax=220, ncycle, dtwait; // Min & max of ramps, total cycles, loop delay

double ain, bin, aex, bex; // Slopes and intercepts of linear output functions
double dt, dtin, dtpause, dtex, t, t3; // Timing parameters
/] —mmmmmmm e
void setup() {
pinMode (LED_pin, OUTPUT); // Initialize pin for output
dt = 0.01; // Time step (seconds). Should be >= 10 milliseconds
dtwait = dt*1000; // Loop delay (milliseconds) corresponding to dt
dtin = 2.0; // Time interval for inhale (seconds)
dtpause = 0.5; // Time interval for pause after inhale (seconds)
dtex = 2.5; // Time intervalfor exhale (seconds)
t3 = dtin + dtpause; // Time at end of the pause (seconds)

ncycle = (dtin + dtpause + dtex) / dt; // Total time steps in a cycle

// -- Use other time interval and range parameters to compute slopes and intercepts of v(t)
ain = double(Vmax - Vmin)/dtin; // Slope during inhale
bin = double(Vmin); // Intercept during inhale
aex = double(Vmin - Vmax)/dtex; // Slope during exhale
bex = double(Vmax) - aex*t3; // Intercept during exhale
}
/] ===

void loop() {

int i, v;
double t;

t = 0.0;
for (i=1; i<=ncycle; i++) {
t += dt;
if (t <= dtin) {
v = int(ain*t + bin);
} else if (t <= t3) {

v = Vmax;
} else {

v = int(aex*t + bex);
}
analogWrite(LED_pin, v);
delay(dtwait) ;

EAS 199 :: Code for the Breathing LED 15
// File: LED_linear_levels_millis.pde
//
// Use PWM to control the brightness of an LED.
// Pattern is a linear ramp up to a constant, followed by a linear decrease back to the
// starting intensity. Repeat indefinitely. Timing is controlled with reference to
// the internal clock via millis(). Switching between phases is determined with "if"
// statements that check the current time. Timing and ramp parameters are gobal
// variables that are computed once at startup. Note that *all* times are in milliseconds
//
// Gerald Recktenwald, gerry@me.pdx.edu, 21 August 2011
int LED_pin = 11; // must be one of 3, 5, 6, 9, 10 or 11
int Vmin=20, Vmax=220; // Min & max of ramp output
int dtin, dtpause, dtex, t3, tcycle; // Timing parameters, all in milliseconds
double ain, bin, aex, bex; // Slopes and intercepts of linear output functions
/] ===
void setup() {
pinMode (LED_pin, OUTPUT); // Initialize pin for output
dtin = 2000; // Time interval for inhale (milliseconds)
dtpause = 500; // Time interval for pause after inhale (milliseconds)
dtex = 2500; // Time interval for exhale (milliseconds)
t3 = dtin + dtpause; // Time at end of the pause (milliseconds)
tcycle = dtin + dtpause + dtex; // Total time for one cycle (milliseconds)
// -- Use other time interval and range parameters to compute slopes and intercepts of v(t)
ain = double(Vmax - Vmin)/double(dtin); // Slope during inhale
bin = double(Vmin) ; // Intercept during inhale
aex = double(Vmin - Vmax)/double(dtex); // Slope during exhale
bex = double(Vmax) - aex*double(t3); // Intercept during exhale
}
/] =

void loop() {

int v;
unsigned long t, tstart;

// save tstart, so that t
tstart = millis();
t = 0;

millis() - tstart is zero at beginning of loop function

while (t < tcycle) {

if (t <= dtin) {
v = int(ain*double(t) + bin);
} else if (t <= t3) {

v = Vmax;
} else {
v = int(aex*double(t) + bex);

}
analogWrite(LED_pin, v);

// Get ready for next pass through the loop
t = millis() - tstart;
if (t<0) break; // Fix roll-over every 50 days or so

