
Arduino Programming
Part 7: Flow charts and

Top-down design
EAS 199B, Winter 2013

Gerald Recktenwald
Portland State University

gerry@me.pdx.edu

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Goals

Introduce flow charts
❖ A tool for developing algorithms
❖ A tool for documenting algorithms
❖ A visual method of communicating about any sequential or

iterative process
❖ Great for visual learners!

Top-down design
❖ One technique for creating a plan for large, multi-step problems
❖ Not tied to flow charts, but can be used effectively with flow

charts

2

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Flow chart symbols

3

Terminator Start or stop a sequence.
May contain module name.

A step in the process or
computational algorithm

Information from outside of
the algorithm or process

Choose a flow path for continuing
the algorithm or process

Connect other elements

Optional joint where flow
indicators merge

Process

Decision

Connector or Junction

Data input

Flow indicators

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 1

Draw the flow chart to read and display the salinity
value on the LCD monitor

Keep it simple
❖ 5 or so symbols (not counting arrows)
❖ Describe only the high level actions

4

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 1

5

Your answer goes here.

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 1

6

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 2

Expand the “Read salinity” step in another flow chart
❖ Keep it simple
❖ “analog data” is an external input

7

analog
input

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 2

8

Your answer goes here.

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 2

9

Read salinity

Turn on power

Wait

Read analog input

Turn off power

Stop

output pin,
input pin

analog
value

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Read salinity

Turn on power

Wait

Read analog input

Turn off power

Stop

output pin,
input pin

analog
value

Exercise 3

Expand the “Read analog input” step in another flow chart
❖ Compute the average of n readings
❖ “analog data” is an external input

10

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 3

11

Your answer goes here.

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Exercise 3

12

Read average analog input

Initialize: sum=0, counter=0

Read analog input

Average = sum/n

Stop

n readings,
input pin

analog
value

Add to sum, increment counter

Counter<n? yes

no

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Top-down design

1. Start with a general statement of the solution
a. List the main steps
b. Don’t worry yet about details

2. Pick one of the steps
a. Break this step into a manageable number of sub-steps
b. Don’t worry about too many of the details
c. Apply step 2 to one of steps just generated

13

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Recursive refinement: from general to specific

Top-down design

14

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Recursive refinement: from general to specific

Top-down design

15

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Read salinity

Turn on power

Wait

Read analog input

Turn off power

Stop

output pin,
input pin

analog
value

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Recursive refinement: from general to specific

Top-down design

16

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Read salinity

Turn on power

Wait

Read analog input

Turn off power

Stop

output pin,
input pin

analog
value

Read average analog input

Initialize: sum=0, counter=0

Read analog input

Average = sum/n

Stop

n readings,
input pin

analog
value

Add to sum, increment counter

Counter<n? yes

no

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Recursive refinement: from general to specific

Top-down design

17

Read and display salinity

Specify constants

Initialize LCD

Read salinity

Display value to LCD

Read salinity

Turn on power

Wait

Read analog input

Turn off power

Stop

output pin,
input pin

analog
value

Read average analog input

Initialize: sum=0, counter=0

Read analog input

Average = sum/n

Stop

n readings,
input pin

analog
value

Add to sum, increment counter

Counter<n? yes

noRepeat refinement until individual
steps can be translated in to
concrete actions or lines of code

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Extending top-down design to
salinity control of the fish tank

Main tasks
❖ Measure salinity
❖ Display salinity on the LCD panel
❖ Check: Are we in the deadtime?

‣ If yes, skip to next loop iteration
‣ If no, check for out of deadband condition

✴ If salinity is above UCL, add fresh water

✴ If salinity is below LCL, add salty water

Each of the tasks could (should!) be decomposed into
smaller steps with a top-down design process

18

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Core control algorithm

19

// File: wait_for_deadtime.ino
//
// Structure of salinity control code to implement a deadtime during which
// no salinity correction is made. This code is incomplete and will not compile.

unsigned long last_salinity_update; // Time of last correction

void setup() {
 Serial.begin(9600);
 last_salinity_update = millis(); // Initial value; change later
}

void loop() {
 float LCL, UCL, salinity;
 int deadtime = ... ;

 salinity = salinity_reading(...);
 update_LCD(...);

 // -- Check for deadtime
 if ((millis() – last_salinity_update) > deadtime) {

 if (salinity>UCL) {
 // add DI water: several missing steps
 last_salinity_update = millis();
 }

 if (salinity<LCL) {
 // add salty water: several missing steps
 last_salinity_update = millis();
 }
 }
}

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Core control algorithm: managing deadtime

20

Global (and persistent) value to remember
time of last change to the system

Set initial value. Update again later

Don’t even consider making changes while
we are in the deadtime. “In the deadtime”
means “current time minus time of last
system change” is greater than deadtime

Update the “time of last system change”
every time the salinity is changed

// File: wait_for_deadtime.ino
//
// Structure of salinity control code to implement a deadtime during which
// no salinity correction is made. This code is incomplete and will not compile.

unsigned long last_salinity_update;

void setup() {
 Serial.begin(9600);
 last_salinity_update = millis();
}

void loop() {
 float LCL, UCL, salinity;
 int deadtime = ... ;

 salinity = salinity_reading(...);
 update_LCD(...);

 // -- Check for deadtime
 if ((millis() – last_salinity_update) > deadtime) {

 if (salinity>UCL) {
 // add DI water: several missing steps
 last_salinity_update = millis();
 }

 if (salinity<LCL) {
 // add salty water: several missing steps
 last_salinity_update = millis();
 }
 }
}

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

// File: wait_for_deadtime.ino
//
// Structure of salinity control code to implement a deadtime during which
// no salinity correction is made. This code is incomplete and will not compile.

unsigned long last_salinity_update;

void setup() {
 Serial.begin(9600);
 last_salinity_update = millis();
}

void loop() {
 float LCL, UCL, salinity;
 int deadtime = ... ;

 salinity = salinity_reading(...);
 update_LCD(...);

 // -- Check for deadtime
 if ((millis() – last_salinity_update) > deadtime) {

 if (salinity>UCL) {
 // add DI water: several missing steps
 last_salinity_update = millis();
 }

 if (salinity<LCL) {
 // add salty water: several missing steps
 last_salinity_update = millis();
 }
 }
}

Core control algorithm: task decomposition

21

1. Function to read salinity sensor and
convert reading to mass fraction.

2. Function to update LCD

3. Function to determine size of the correction
and open the valve. One function could
handle both corrections if you design it to
use the right input arguments

Wednesday, February 20, 2013

Arduino Programming Part 7: EAS 199B

Recommendations

22

• Work in small increments
❖ Identify a task, build the code to test that task independently of

the entire control algorithm

• Write functions to do specific tasks
❖ Read salinity sensor and convert to mass fraction
❖ Update display
❖ Determine size duration of valve opening, and open it

• Document your code as you write it
• Save backups of working code and testing codes
• Use Auto Format to clean up code

Wednesday, February 20, 2013

