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2 ODE Integration

12.3 Manually perform three steps of Euler’s method to solve

dy

dt
=

1
t + y + 1

, y(0) = 0,

with h = 0.2.

Partial Solution: Euler’s method predicts y(0.6) = 0.4576112.. The exact solution is y(0.6) =
0.426493.

♦

12.7 (Stoer and Bulirsch [70]) Use Euler’s method with h = 0.05 to solve

dy

dt
=

√
y, y(0) = 0, 0 ≤ t ≤ 2.

Plot a comparison of the numerical solution with the exact solution. Does the plot indicate that
there is an error in odeEuler? If there is no error in odeEuler, can you explain the peculiar results?
Recompute the solution with odeMidpt and odeRK4. (Hint : What happens if the initial condition
y(0) = εm is used instead of y(0) = 0? )

Solution: The exact solution is y = (t/2)2. Evaluating the numerical solution gives yj = 0 for any
h. This result is not due to an error in odeEuler. The behavior of Euler’s method is the same as
the behavior of any one-step method for this ODE: all one-step numerical solutions are yj(tj) = 0
regardless of step size.

The general one-step formula is (cf. Equation (12.23))

yj = yj−1 + hΦ(t, y, h, f)

For this ODE, Φ(t, y, h, f) = 0 at t = 0 for any h, so that y2 = 0 (the first step) for any one-step
method. Furthermore, Φ(t, y, h, f) = 0 whenever y = 0 so the numerical solution will remain stuck
at yj = 0 for all j. The trick to solving this problem is to perturb the initial condition, for example,
by using y(0) = εm instead of y(0) = 0. By intentially introducing this neglible error in the initial
condition, the numerical solution will produce Φ(t, y, h, f) �= 0 for the first and subsequent time
steps.

The odeEulerSqrt function performs two numerical integrations of the ODE using Euler’s method.
One numerical solution is with y(0) = 0 and the other is with y(0) = εm.

function demoEulerSqrt

% demoEulerSqrt Solve y’ = sqrt(y), y(0) = 0; Exact solution: y = (t/2)^2

% reference: Bulirsh and Stoer, Chapter 7, exericse 4

diffeq = inline(’sqrt(y)’,’t’,’y’);

tn = 2; y0 = 0;

% --- Two solutions differing by the value of y(0)

[t1,y1] = odeEuler(diffeq,tn,tn/100,y0);

[t2,y2] = odeEuler(diffeq,tn,tn/100,y0+eps);

% --- Evaluate exact solution and plot comparison

ye = (t2/2).^2;

plot(t2,ye,’-’,t1,y1,’o’,t2,y2,’s’);

legend(’Exact’,’y(0)=0’,’y(0)=\epsilon_m’,2);

title(’Solutions by odeEuler’); xlabel(’t’); ylabel(’y’);
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Running odeEulerSqrt produces the plot on the next page.
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Exercise 12–7.

♦

12.10 Using odeEuler.m as a guide, write an m-file to implement Heun’s method for an arbitrary,
first-order ODE. Use your function to solve equation (12.11) for h = 0.2, h = 0.1, h = 0.05, and
h = 0.025. Compare the global discretization error of your program with the theoretical prediction
of the global discretization error for Heun’s method.

Partial Solution: The odeHeun function is obtained by making small modifications to either
the odeEuler or odeMidpt function. Once odeHeun is written, it can be called (for example) by
demoHeun which is a trivial modification of the demoEuler function. The partial output of running
demoHeun for h = 0.1, h = 0.05, and h = 0.025 is

Max error = 3.58e-03 for h = 0.100000

Max error = 8.27e-04 for h = 0.050000

Max error = 1.99e-04 for h = 0.025000

♦

12.12 For each of the following initial value problems, verify that the given y(t) is the solution.

(a)
dy

dt
=

t2

α
− y; y(0) = 1; =⇒ y(t) =

1
α

[
t2 − 2t + 2 + (α − 2)e−t

]

Solution (a): The easiest way to verify that the proposed solution is correct is by direct substi-
tution into the initial value problem. The proposed solution is correct only if it satisfies the ODE
and the initial condition.

Begin by evaluating d/dt of the proposed analytical solution.

d

dt

{
1
α

[
t2 − 2t + 2 + (α − 2)e−t

]}
=

1
α

[
2t − 2− (α − 2)e−t

]
(
)
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4 ODE Integration

Next, substitute the proposed analytical solution into the right hand side of the ODE

t2

α
− y =

t2

α
− 1

α

[
t2 − 2t + 2 + (α − 2)e−t

]
=

1
α

[
2t − 2− (α − 2)e−t

]
(

)

Comparing the far right hand side of Equation (
) with the far right hand side of Equation (

) we
see that the proposed solution satisfies the ODE.

Now, verify the initial condition.

y(0) =
1
α

[
02 − (2)(0) + 2 + (α − 2)e0

]
=

1
α
[0− 0 + 2 + α − 2] =

α

α
= 1

Therefore, since the proposed solution satisfies both the differential equation an the initial condition,
it is a solution to the initial value problem. Since the initial value problem is linear, the solution is
unique.

♦

12.15 Repeat Exercise 13 using the built-in ode23 method and ode45 methods to solve the equa-
tions. Do not attempt to run the sequence of decreasing h values. (Why not?) Instead, compare
the solutions from ode23 and ode45 using the default convergence parameters.

Solution (a): Use ode23 and ode45 to solve

dy

dt
=

t2

α
− y; y(0) = 1;

with α = 3, y0 = 1, tn = 2. The exact solution is

y(t) =
1
3

[
t2 − 2t + 2 + e−t

]

The demoOde2345_1a uses ode23 and ode45 to obtain the numerical solutions.

function demoOde2345_1a

% demoOde2345_1a Integrate dy/dt = (t^2)/3 - y with ode23 and ode45

%

% Synopsis: demoOde2345_1a

%

% Input: none

%

% Output: A table comparing the numerical and exact solutions

rhs = inline(’(t.^2)/3 - y’,’t’,’y’); % rhs of ODE

exact = inline(’(t.^2 - 2*t +2 + exp(-t))/3’,’t’); % exact solution

tn = 2; y0 = 1; % stopping time and IC

[t23,y23] = ode23(rhs,tn,1); % solution with ode23

[t45,y45] = ode45(rhs,tn,1); % solution with ode45

yex = exact(t45); % Exact solution

plot(t23,y23,’o’,t45,y45,’s’,t45,yex,’-’);

fprintf(’\nMax error = %10.2e for ode23\n’,norm(y23-exact(t23),inf));

fprintf(’Max error = %10.2e for ode45\n’,norm(y45-yex,inf));

legend(’ode23’,’ode45’,’exact’);

Running odeEulerSqrt produces
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>> demoOde2345_1a

Max error = 2.41e-04 for ode23

Max error = 1.97e-07 for ode45

and the plot on the next page. The plot of the solutions by ode23 and ode45 appear to be in good
agreement with the exact solution. A quantitative comparision of the methods shows that ode45
produces a more accurate result. The maximum error (which is the same as the global discretization
error) produced by ode45 is much smaller than the maximum error produced by ode23.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.4

0.5

0.6

0.7

0.8

0.9

1
ode23
ode45
exact

Plot of solution to
Exercise 12–15.

♦

12.25 Create modified version of the rhsSmd function (see Listing 12.13 on page 723) to implement
the following forcing functions for the second order spring–mass–damper system of Example 12.12.

F0

2

ramp negative step

F0

1
t t

(a) Sinusoidal force input. F (t) = F0 sin(ωt), where ω �= ωn.

(b) Ramp force input from 0 to 2 seconds, then constant at F0.

(c) Constant force of F0 for a duration of 1 second, then zero force.

Compare the system responses for F0 = 1. Hint : Write a separate m-file function to evaluate
each F (t) for parts (a), (b), and (c). A particular F (t) function is then chosen at run-time, not
by repeated editing of rhsSmd. One way to do this is to pass the name of the chosen F (t) m-file
through ode45 to the modified rhsSmd function, where the F (t) function is then called with the
built-in feval function. In this implementation, the name of the F (t) function should also be an
input to the modified demoSmd function.
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6 ODE Integration

Partial Solution: The modified rhsSmd function is called rhsSmdVarInput. The compatible m-
file to evaluate step input forcing function is called stepFun. Both m-files are listed on the following
page

function dydt = rhsSmdVarInput(t,y,flag,zeta,omegan,inFun,u0,tin)

% rhsSmdVarInput RHS of coupled ODEs for a spring-mass-damper system

% Variable forcing functions are specified on input

%

% Synopsis: dydt = rhsSmdVarInput(t,x,flag,zeta,omegan,a0)

%

% Input: t = time, the independent variable

% y = vector (length 2) of dependent variables

% y(1) = displacement and y(2) = velocity

% flag = dummy argument for compatibility with ode45

% zeta = damping ratio (dimensionless)

% omegan = natural frequency (rad/s)

% inFun = (string) name of m-file to evaluate forcing function

% Currently allowed functions are ’stepFun’, ’rampFun’

% ’stepDownFun’, and ’sineFun’

% u0 = magnitude of force input function

% tin = time scale for force input. Meaning of tin

% depends on value of inFun:

%

% inFun meaning of tin

% ----- ----------------------------

% stepFun Time at start of step (tin = 0, usually)

% rampFun Time at end of ramp, input is constant for t>tin

% stepDownFun Time at which input is set to zero.

% For 0 <= t <= tin, input is u0

% sineFun Time units *per radian* of oscillatory input.

% f = u0*sin(t/tin)

%

% Output: dydt = column vector of dy(i)/dt values

f = feval(inFun,t,u0,tin);

dydt = [ y(2); f - 2*zeta*omegan*y(2) - omegan*omegan*y(1)];

function f = stepFun(t,u0,tin)

% stepFun Step input in force

if t<=tin, f = 0.0; % zero input before the step

else, f = u0; % step input

end

♦
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12.27 Duffing’s equation
d2x

dt2
+ kx + x3 = B cos t

describes the chaotic dynamics of a circuit with a nonlinear inductor. (See, for example, Moon [57]).
Convert this equation to a system of two first-order ODEs, and solve the system for k = 0.1 and
B = 12 and 0 ≤ t ≤ 100. Create the Poincaré map of the system by plotting y2 versus y1.

Typographical Error: In the first printing of the book, the problem statement incorrectly asserts
that the Poincaré map is obtained by plotting dx/dt versus t. Instead, the Poincaré map is a plot
of the state variables against each other with time as the parameter. For this problem the map is
obtained by plotting dx/dt versus x.

Partial Solution: The Poincaré map is shown below
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Exercise 12–27.

♦
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