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2 Numerical Integration

11.2 Write a polyInt function that uses the built-in polyval function to evaluate the definite
integral of a polynomial. The inputs to polyInt should be a vector of polynomial coefficients and
the lower and upper limits of integration. Test your function by evaluating the two integrals in the
preceding exercise.

Update for Matlab version 6: Version 6 includes a polyint function that comes close to solving
this Exercise. To avoid the name clash, the solution presented here is to develop a polyIntegral
function.

Partial Solution: A correct implementation of polyIntegral gives

>> I1 = polyIntegral([1 1 1],-pi/2,pi)

I1 =

20.0408

>> I1exact = (3/8)*pi^3 + (3/8)*pi^2 + (3/2)*pi;

>> err1 = I1 - I1exact

err1 =

0

>> I2 = polyIntegral([1 0 0 -1],sqrt(3),-5)

I2 =

160.7321

>> I2exact = ( (-5)^4/4 + 5 ) - ( 9/4 - sqrt(3) );

>> err2 = I2 - I2exact

err2 =

0

How would the built-in polyint (Matlab version 6) function be used to evaluate the definite
integral of a polynomial?

♦
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11.3 Use the symbolic capability of the Student Edition of Matlab or the Symbolic Mathematics
Toolbox, to find the definite integral of the generalized humps function

f(x) =
1

(x − c1)2 + c2
+

1
(x − c3)2 + c4

+ c5

Solution: The following Matlab session requires a version of the Symbolic Mathematics Toolbox.

>> syms a b c1 c2 c3 c4 c5 f x

>> f = 1/( (x-c1)^2 + c2 ) + 1/( (x-c3)^2 + c4 ) + c5

f =

1/((x-c1)^2+c2)+1/((x-c3)^2+c4)+c5

>> g = int(f,x,a,b)

g =

( atan( (b-c1)/c2^(1/2) )*c4^(1/2)

+ atan( (b-c3)/c4^(1/2) )*c2^(1/2)

+ c5*b*c2^(1/2)*c4^(1/2)

)/c2^(1/2)/c4^(1/2)

- ( atan( (a-c1)/c2^(1/2) )*c4^(1/2)

+ atan( (a-c3)/c4^(1/2) )*c2^(1/2)

+ c5*a*c2^(1/2)*c4^(1/2) )/c2^(1/2)/c4^(1/2)

which can be rearranged as

g = ( atan((c1-a)/sqrt(c2)) - atan((c1-b)/sqrt(c2)) )/sqrt(c2) ...

+ ( atan((c3-a)/sqrt(c4)) - atan((c3-b)/sqrt(c4)) )/sqrt(c4) ...

+ c5*(b-a);

♦
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4 Numerical Integration

11.8 F.M. White (Fluid Mechanics, fourth edition, 1999, McGraw-Hill, New York., problem 6.57)
gives the following data for the velocity profile in a round pipe

r/R 0.0 0.102 0.206 0.412 0.617 0.784 0.846 0.907 0.963
u/uc 1.0 0.997 0.988 0.959 0.908 0.847 0.818 0.771 0.690

r is the radial position, R = 12.35 cm is the radius of the pipe, u is the velocity at the position r,
and uc is the velocity at the centerline r = 0. The average velocity in a round pipe is defined by

V =
1

πR2

∫ R

0

u 2πr dr, or
V

uc
=

∫ 1

0

2
V

uc
η dη,

where η = r/R. What is the value of V for the given data if uc = 30.5m/s? Do not forget to include
the implied data point u/uc = 0 at r/R = 1. The data in the table is in the vprofile.dat file in
the data directory of the NMM toolbox.

Typographical Error: A factor of 2 is missing from the second integral expression. The correct
formula for V/uc is

V

uc
=

∫ 1

0

2
V

uc
η dη

Numerical Answer: Using trapzDat function with the correct form of the integral for V/uc,
gives V = 25.4870 m/s.

♦
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11.12 Use the Trapezoid rule to evaluate

β(m,n) =
∫ 1

0

xm−1(1− x)n−1 dx

for any m and n and for a sequence of decreasing panel sizes h. Print the value of β(m,n), and
the error relative to the value returned by the built-in beta function. Use your function to evaluate
β(1, 2), β(1.5, 2.5), β(2, 3), and β(2, 5). Comment on the convergence rate. (Hint : The values of m
and n can be passed around (not through) trapezoid with global variables.)

Partial Solution: The solution is obtained by writing two m-file functions. One function evaluates
the integrand, and the other calls trapezoid with a sequence of decreasing panel sizes. This second
m-file is obtained with minor modifications to the demoTrap function. I’ve called it betaTrap. The
prologue of the betaTrap function is

function betaTrap(m,n)

% betaTrap Evaluate beta function with trapezoid rule

%

% Synopsis: betaTrap

% betaTrap(m,n)

%

% Input: m,n = (optional) parameters of the beta function

% Default: m = 1, n = 2

%

% Output: Table of integral values as a function of decreasing panel size

Running betaTrap for m = 1 and n = 2 gives

>> betaTrap

Iexact = 0.500000000

n h I error alpha

3 0.50000 0.500000000 0.000000000

5 0.25000 0.500000000 0.000000000 -0.00000

9 0.12500 0.500000000 0.000000000 -0.00000

17 0.06250 0.500000000 0.000000000 -0.00000

33 0.03125 0.500000000 0.000000000 -0.00000

65 0.01562 0.500000000 0.000000000 -0.00000

129 0.00781 0.500000000 0.000000000 -0.00000

257 0.00391 0.500000000 0.000000000 -0.00000

The numerical integral is exact in this case becuase the integrand reduces to (1− x). The trapezoid
rule integrates a linear function with no truncation error.

Running betaTrap for m = 1.5 and n = 2.5 gives

>> betaTrap(1.5,2.5)

Iexact = 0.196349541
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6 Numerical Integration

n h I error alpha

3 0.50000 0.125000000 -0.071349541

5 0.25000 0.170753175 -0.025596365 1.47897

9 0.12500 0.187231817 -0.009117724 1.48919

17 0.06250 0.193113697 -0.003235844 1.49453

33 0.03125 0.195203315 -0.001146226 1.49725

65 0.01562 0.195943901 -0.000405639 1.49862

129 0.00781 0.196206057 -0.000143484 1.49931

257 0.00391 0.196298800 -0.000050741 1.49965

The theoretical value of α = 2 is not obtained becuase the derivative of the integrand is not defined
at the lower limit of integration. The truncation error for the composite trapezoid rule is bounded
by Ch2f ′′(ξ) where C is a constant and f ′′(ξ) is the second derivative of the integrand evaluated at
some point ξ in the limits of integration. For m = 1.5 and n = 2.5, f =

√
x(1−x)3/2 and f ′′(x) → ∞

as x approaches zero. Although the formulas in the trapezoid rule do not encounter a division by
zero, the truncation error reduces more slowly than O(h2) because of the contribution of f ′′(ξ).

♦
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11.16 Evaluate

I =
∫ 1

0

√
x dx

using the NMM routines trapezoid, simpson, and gaussQuad. For each routine, evaluate the
integral for at least three different panel sizes. Present a table comparing the measured truncation
error as a function of panel size. Report any problems in obtaining values of I. Which routine works
best for this problem?

Partial Solution: The solution is obtained by modifying the code in the demoTrap, demoSimp,
and demoGauss functions. For convenience the modified code from these function is combined into
a single m-file called intSqrt. Running intSqrt gives:

>> intSqrt

Evaluate Integral with Trapezoid Rule: Iexact = 0.6666667

n h I error alpha

3 0.50000 0.603553391 -0.063113276

5 0.25000 0.643283046 -0.023383620 1.43245

9 0.12500 0.658130222 -0.008536445 1.45379

17 0.06250 0.663581197 -0.003085470 1.46815

33 0.03125 0.665558936 -0.001107730 1.47788

65 0.01562 0.666270811 -0.000395855 1.48456

129 0.00781 0.666525657 -0.000141009 1.48918

257 0.00391 0.666616549 -0.000050118 1.49240

Evaluate Integral with Simpson’s Rule: Iexact = 0.6666667

n h I error alpha

3 0.50000 0.656526265 -0.010140402

5 0.25000 0.663079280 -0.003587387 1.49911

9 0.12500 0.665398189 -0.001268478 1.49983

17 0.06250 0.666218183 -0.000448484 1.49997

33 0.03125 0.666508103 -0.000158564 1.49999

65 0.01562 0.666610606 -0.000056061 1.50000

129 0.00781 0.666646846 -0.000019820 1.50000

257 0.00391 0.666659659 -0.000007008 1.50000

Evaluate Integral with Gauss-Legendre Rule: Iexact = 0.6666667

Gauss-Legendre quadrature with 4 panels, H = 0.250000

nodes I error

1 0.6729773970 6.31e-03

2 0.6675777702 9.11e-04

3 0.6669809064 3.14e-04

4 0.6668117912 1.45e-04

5 0.6667454321 7.88e-05

6 0.6667141381 4.75e-05

7 0.6666974690 3.08e-05

8 0.6666877808 2.11e-05
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8 Numerical Integration

Gauss-Legendre quadrature with 8 nodes

panels H I error alpha

2 0.50000 0.6667263866 5.97e-05

4 0.25000 0.6666877808 2.11e-05 1.50

8 0.12500 0.6666741317 7.46e-06 1.50

16 0.06250 0.6666693059 2.64e-06 1.50

32 0.03125 0.6666675998 9.33e-07 1.50

64 0.01562 0.6666669966 3.30e-07 1.50

128 0.00781 0.6666667833 1.17e-07 1.50

256 0.00391 0.6666667079 4.12e-08 1.50

None of the integration rules achieves its theoretical truncation error. The reason is that the in-
tegrand is not sufficiently differentiable at the lower limit of integration. (See also the solution to
Exercise 11-12.) The Gauss–Legendre rule with eight nodes per panel obtains the result with the
smallest error, though its performance is considerable worse on this integrand than on the integrands
demonstrated in the Examples in the text.

♦
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11.22 Write an m-file function that evaluates
∫ 2π

0
sin2(x) dx using the composite trapezoid rule,

composite Simpson’s rule, and composite Gauss–Legendre quadrature with four nodes per panel.
Place the calls to trapezoid, simpson, and gaussQuad inside a loop and repeat the calculations
for np = [2 4 8 16 32 64], where np is the number of panels. Record the number of function
evaluations, n, for each method. Print the absolute error |I − Iexact| for the three methods versus n.
(See, for example, [13,§ 2.9] for help in explaining the results.)

Partial Solution: The computations are carried out with the compint_sinx2 function. The
prologue for compint_sinx2 is

function compint_sinx2(a,b)

% compint_sinx2 Compare quadrature rules for integral of (sin(x))^2

%

% Synopsis: compint_sinx2

% compint_sinx2(a,b)

%

% Input: a,b = (optional) limits of integration. Default: a=0; b=pi

%

% Output: Values of integral obtained by trapezoid and simpsons rules

% for increasing number of panels

Running compint_sinx2 with the default inputs gives:

>> compint_sinx2

Integral of (sin(x))^2 from 0*pi to 1*pi

Iexact = 1.570796327

Trapezoid Simpson Gauss-Legendre

n error n error n error

3 0.00000e+00 5 0.00000e+00 8 0.00000e+00

5 0.00000e+00 9 0.00000e+00 16 0.00000e+00

9 0.00000e+00 17 0.00000e+00 32 0.00000e+00

17 0.00000e+00 33 0.00000e+00 64 -2.22045e-16

33 0.00000e+00 65 0.00000e+00 128 0.00000e+00

65 0.00000e+00 129 0.00000e+00 256 0.00000e+00

Note that n is the number of nodes at which the integrand is evaluated, not the number of panels
used by the various composite rules. All methods give neglible errors regardless of the number of
panels. The trapezoid rule is known to rapidly converge for a periodic integrand when the limits
of the integral are points at which the integrand and its derivative assume periodic values. See
Davis and Rabinowitz [13,§ 2.9] for details. sin2 x is an extreme example of the special behavior for
periodic integrands.

A slightly more interesting results is obtained if np = [ 1 2 4 8 16 32] and the Gauss–Legendre
rule with two (instead of four) points per panel is used. Making these changes and running the
modified compint_sinx2 gives

>> compint_sinx2

Integral of (sin(x))^2 from 0*pi to 1*pi

Iexact = 1.570796327
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Trapezoid Simpson Gauss-Legendre

n error n error n error

2 -1.57080e+00 3 5.23599e-01 2 -3.77963e-01

3 0.00000e+00 5 0.00000e+00 4 0.00000e+00

5 0.00000e+00 9 0.00000e+00 8 0.00000e+00

9 0.00000e+00 17 0.00000e+00 16 0.00000e+00

17 0.00000e+00 33 0.00000e+00 32 0.00000e+00

33 0.00000e+00 65 0.00000e+00 64 0.00000e+00

This result allows direct comparison with somewhat more comparable number of nodes in each row.
The first row shows the error for applying the basic rule for each method.

If, for the integral in this Exercise, the limits of the integral are shifted to 0 and some non-
rational multiple of π, the integration schemes behave as usual. Rerunning the modified version
of compint_sinx2 gives

>> compint_sinx2(0,5.12*pi)

Integral of (sin(x))^2 from 0*pi to 5.12*pi

Iexact = 7.871340417

Trapezoid Simpson Gauss-Legendre

n error n error n error

2 -6.78146e+00 3 2.83874e+00 2 -7.23535e+00

3 4.33692e-01 5 -6.75466e-01 4 2.67829e-01

5 -3.98177e-01 9 5.76797e-01 8 -4.38233e-01

9 3.33054e-01 17 -2.84133e-02 16 1.95645e-02

17 6.19534e-02 33 -1.10178e-03 32 7.40447e-04

33 1.46620e-02 65 -6.25700e-05 64 4.17971e-05

Now the truncation errors do not decrease so dramatically because the limits of the integral do not
produce periodic values of the integrand and its derivatives.

♦
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