
Selected Solutions for Exercises in

Numerical Methods with Matlab:
Implementations and Applications

Gerald W. Recktenwald

Chapter 8

Solving Systems of Equations

The following pages contain solutions to selected end-of-chapter Exercises
from the book Numerical Methods with Matlab: Implementations and
Applications, by Gerald W. Recktenwald, c© 2000, Prentice-Hall, Upper
Saddle River, NJ. The solutions are c© 2000 Gerald W. Recktenwald. The
PDF version of the solutions may be downloaded or stored or printed only
for noncommercial, educational use. Repackaging and sale of these solutions
in any form, without the written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material
for the book, can be found at www.prenhall.com/recktenwald.

2 Solving Systems of Equations

8.6 Manually solve QRx = b for x where

Q =



1/
√
2 0 −1/

√
2

0 1 0
1/
√
2 0 1/

√
2


 R =

√
2



1 1 1
0 1 1
0 0 1


 b =




2
2
√
2

4




Hint: Take advantage of the properties of Q identified in the preceding problem.

Solution: Before any detailed (i.e. element-by-element) computations are performed, manipulate
the given equation as products of matrices and vectors. From Exercise 8.3 we know that QT Q = I,
so that QT = Q−1, and Q is an orthogonal matrix.

Multiplying both sides of QRx = b by QT and simplifying gives

QT QRx = QT b =⇒ Rx = QT b

For convenience, let z = QT b (z is a 3 × 1 column vector). If the z vector is known, we can solve
Rx = z for z with backward substitution. Given the preceding manipulations we can obtain an
“easy” solution to QRx = b with the following two steps

1. Evaluate z = QT b

2. Solve Rx = z with backward substitution

This completes the solution strategy. All that remains is performing the computations.

Use the row view of the matrix-vector product to evaluate QT b

z = QT b =




1/
√
2 0 1/

√
2

0 1 0
−1/

√
2 0 1/

√
2







2
2
√
2

4


 =




2/
√
2 + 0 + 4/

√
2

0 + 2
√
2 + 0

−2/
√
2 + 0 + 4/

√
2


 =



6/
√
2

2
√
2

2/
√
2




Next solve
√
2



1 1 1
0 1 1
0 0 1







x1

x2

x3


 =



6/
√
2

2
√
2

2/
√
2




with backward substitution. For convenience, first divide through by the factor of
√
2



1 1 1
0 1 1
0 0 1







x1

x2

x3


 =

1√
2



6/
√
2

2
√
2

2/
√
2


 =



6/2
2
2/2


 =



3
2
1




Work from x3 up to x1 (backward substitution):

x3 = 1

x2 + x3 = 2 =⇒ x2 = 2− x3 = 1

x1 + x2 + x3 = 3 =⇒ x1 = 3− x2 − x3 = 1

Therefore the solution is x = [1, 1, 1]T . The following Matlab statements double-check the manual
solution. First, define the Q, R, and b vectors as given

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 8: Solving Systems of Equations 3

>> s2 = sqrt(2);

>> Q = [1/s2 0 -1/s2; 0 1 0; 1/s2 0 1/s2]

Q =

0.7071 0 -0.7071

0 1.0000 0

0.7071 0 0.7071

>> R = s2*[1 1 1; 0 1 1; 0 0 1]

R =

1.4142 1.4142 1.4142

0 1.4142 1.4142

0 0 1.4142

>> b = [2; 2*s2; 4]

b =

2.0000

2.8284

4.0000

As a check, verify that QT Q = I

>> Q’*Q - eye(3)

ans =

1.0e-15 *

-0.2220 0 0.0224

0 0 0

0.0224 0 -0.2220

Now, obtain the solution by computing z, and then computing x by backward substitution.

>> z = Q’*b

z =

4.2426

2.8284

1.4142

>> x(3) = z(3)/R(3,3)

x =

0 0 1.0000

>> x(2) = (z(2) - R(2,3)*x(3)) / R(2,2)

x =

0 1.0000 1.0000

>> x(1) = (z(1) - R(1,2)*x(2) - R(1,3)*x(3)) / R(1,1)

x =

1.0000 1.0000 1.0000

>> x = x(:) % convert x to column vector

x =

1.0000

1.0000

1.0000

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

4 Solving Systems of Equations

We used to the most general form of the backward substitution steps, and did not exploit the fact
that all of the upper triangular elements of R are equal to one. Conversion of x from a row vector
to a column vector with x = x(:) is necessary because the x was first created as a row vector with
the statement x(3) = z(3)/R(3,3).

8.12 Starting with the code in the GEshow function, develop a GErect function that performs
Gaussian Elimination only (no backward substitution) for rectangular (m×n) matrices. The GErect
function should return Ã, the triangularized coefficient matrix, and b̃, the corresponding right hand
side vector. Use the GErect function to solve Exercise 11.

Partial Solution: The prologue and partial code for the GErect function is shown below. The
only substantial difference between GEshow and GErect is that GErect does not perform backward
substitution.

function [At,bt] = GErect(A,b,ptol)

% GErect Gauss elimination for rectangular coefficient matrices

% No pivoting is used.

%

% Synopsis: [At,bt] = GErect(A,b)

% [At,bt] = GErect(A,b,ptol)

%

% Input: A,b = coefficient matrix and right hand side vector

% ptol = (optional) tolerance for detection of zero pivot

% Default: ptol = 50*eps

%

% Output: At = triangularized coefficient matrix obtained by elimination

% bt = right hand side vector transformed by the same row

% operations necessary to obtain At

if nargin<3, ptol = 50*eps; end

[m,n] = size(A);

nb = n+1; Ab = [A b]; % Augmented system

fprintf(’\nBegin forward elimination with Augmented system:\n’); disp(Ab);

... more code goes here

At = Ab(:,1:n); bt = Ab(:,nb);

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 8: Solving Systems of Equations 5

8.16 Write an lsolve function to solve Ax = b when A is a lower triangular matrix. Test your
function by comparing the solutions it obtains with the solutions obtained with the left division
operator.

Partial Solution: The lsolve function is listed below. The reader is left to complete the Exercise
by devising appropriate tests for lsolve.

function x = lsolve(L,b)

% lsolve solves the lower triangular system Lx = b

%

% Synopsis: x = lsolve(L,b)

%

% Input: L = lower triangular coefficient matrix

% b = right hand side vector

%

% Output: x = solution vector

[m,n] = size(L);

if m~=n, error(’L matrix is not square’); end

x = zeros(n,1); % preallocate x for speed

x(1) = b(1)/L(1,1); % begin forward substitution

for i=2:n

x(i) = (b(i) - L(i,1:i-1)*x(1:i-1))/L(i,i);

end

8.21 (3) The inverse matrix A satisfies AA−1 = I. Using the column view of matrix–matrix
multiplication (see Algorithm 7.5 on page 327) we see that the jth column of A−1 is the vector x
such that Ax = e(j), where e(j) is the jth column of the identity matrix (e.g., e3 = [0, 0, 1, . . . , 0]T).
By solving Ax = e(j) for j = 1, . . . , n the columns of A−1 can be produced one at a time.

(a) Write a function called invByCol that computes the inverse of an n× n matrix one column at
a time. Use the backslash operator to solve for each column of A−1.

(b) Use the estimates in Table 8.1 to derive an order-of-magnitude estimate for how the flop count
of invByCol depends on n for an n × n matrix.

(c) Verify the estimate derived in part (b) by measuring the flop count of invByCol for matrices
of increasing size. Use A = rand(n,n) for n = 2, 4, 8, 16, 32, . . . , 128. Compare the flop count of
invByCol with those of the built-in inv command. Note that the order-of-magnitude estimate
will only hold as n becomes large. Users of Matlab version 6 will not be able to use the flops
function to measure the flops performed by inv. In that case, use the estimate that matrix
inversion can be performed in O(n3) flops.

Solution (a): A is given. The objective is to solve a sequence of problems Ax = e(j), j = 1, . . . , n.
Each x becomes a column of A−1. Doing so requires a loop, and a way to define e(j). The following
statements do the job

for j=1:n

e = zeros(n,1); e(j) = 1;

Ai(:,j) = A\e;

end

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

6 Solving Systems of Equations

where n is the number of rows in A. The expression Ai(:,j) = A\e stores the solution to Ax = e(j)

in the jth column of Ai. The efficiency of the loop can be improved by preallocating memory for
Ai, and using a fixed zero vector z = zeros(n,1) instead of creating a new vector on each pass
through the loop. These improvements, along with provisions for input and output and some basic
error checking are incorporated into the invByCol function listed below.

function Ai = invByCol(A)

% invByCol Compute matrix inverse of a matrix by columns

%

% Synopsis: Ai = invByCol(A)

%

% Input: A = square (n by n) matrix

%

% Output: Ai = inverse of A, if it exists

[m,n] = size(A);

if m~=n, error(’Inverse is defined only for square matrices’); end

Ai = zeros(n,n); % pre-allocate for speed

z = zeros(n,1); % temporary vector

for j=1:n

e = z; e(j) = 1; % reset column of I

Ai(:,j) = A\e; % Solve for jth column of A^(-1)

end

A simple test of invByCol is

>> A = rand(5,5); Ai = invByCol(A); E = Ai*A - eye(5)

E =

1.0e-15 *

-0.1110 -0.1661 -0.2774 -0.0659 -0.1029

-0.0513 0.2220 0.0081 -0.0912 -0.1724

0.1372 0.1194 0.4441 0.3129 0.0386

-0.0205 -0.0691 -0.1924 0 0.0978

-0.0833 0.0571 0.0031 0.0324 0

>> norm(A,1)

ans =

3.3992

>> norm(E,1)

ans =

9.2514e-16

Since ‖E‖1 � ‖A‖1 and A is reasonably well-conditioned (How do we know?), the invByCol function
appears to be working. Note that the L1 norm is chosen for efficiency. Both the L∞ and L2 norms
would give equivalent results. The L∞ norm would take less flops than the L1 norm. Both L1

and L∞ norms are significantly more efficient than the L2 norm. For a 5 × 5 matrix the efficiency
differences are irrelevant, however.

Solution (b): Each solution of Ax = e(j) takes O(n3/3) flops. There are n columns of A−1 so the
invByCol function takes n ×O(n3/3) = O(n4/3) flops for an n × n matrix A. This is an expensive
way to compute A−1.

Solution (c): The demoInvByCol function (listed below) measures the flops performed by the
invByCol function and the built-in inv function. These functions are applied to a sequence of

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 8: Solving Systems of Equations 7

random n×n matrices is generated for n = [2 4 8 16 32 64 128]. The elements of matrix A are
unimportant as long as A is nonsingular. It turns out that the matrices generated by the built-in
rand function are rarely singular. The flop counts are measured with the built-in flops function.
Note that these measurements will yield zero flops for Matlab version 6 and later. Thus, the
demoInvByCol function is useful only to users of Matlab version 5 and earlier.

The flop count for each n is saved for plotting and analysis. The powfit function is used to obtain
the least squares fit (see “Fitting Lines to Apparently Nonlinear Functions” in Chapter 9) to

f = c1n
c2

where f is a vector of measured flop counts and n is the vector of matrix dimensions. The c2

exponent should be 4 for the invByCol function because the flop count grows as O(4). (See solution
to part (b), above.) For the built-in inv function the c2 exponent should be 3 because the inv
function computes the inverse via LU factorization, flop count grows as O(3).

The n(3:end) and f(n:end) vectors are passed to powfit. The 3:end index subexpression selects
the third through last elements of the vector. This improves the estimate of c2 because the order of
magnitude estimates of the flop counts only applies for large n.

function demoInvByCol

% demoInvByCol Measure flop count behavior of invByCol

% --- Count flops for invByCol and built-in inv functions

n = [2 4 8 16 32 64 128]; % Sizes of problems to run

for i=1:length(n)

A = rand(n(i),n(i));

flops(0); Ai = invByCol(A); fcol(i) = flops;

flops(0); Ai = inv(A); fInv(i) = flops;

end

% --- Use least squares fits to obtain exponent of flops relationship

c = powfit(n(4:end),fcol(4:end));

cinv = powfit(n(4:end),fInv(4:end));

% --- Evaluate least squares fits and plot

nfit = n(4:end);

fcolfit = c(1)*nfit.^c(2);

finvfit = cinv(1)*nfit.^cinv(2);

loglog(n,fcol,’o’,nfit,fcolfit,’-’,n,fInv,’v’,nfit,finvfit,’-’)

legend(’invByCol flops’,’fit’,’inv flops’,’fit’,2)

xlabel(’Number of unknowns’); ylabel(’flops’);

% --- Print summary

fprintf(’\nFlop counts:\n\n’);

fprintf(’ n invByCol inv\n’);

for i=1:length(n)

fprintf(’ %4d %10d %10d\n’,n(i),fcol(i),fInv(i));

end

fprintf(’ exponent O(%3.1f) O(%3.1f)\n’,c(2),cinv(2));

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

8 Solving Systems of Equations

function c = powfit(x,y)

% expfit Least squares fit of data to y = c1*x^c2

%

% Synopsis: c = powfit(x,y)

%

% Input: x,y = vectors of independent and dependent variable values

%

% Output: c = vector of coefficients: y = c(1)*x^c(2)

if length(y)~=length(x), error(’Dimensions of x and y are not compatible’); end

ct = linefit(log(x(:)),log(y(:))); % Line fit to transformed data

c = [exp(ct(2)) ct(1)]; % Extract parameters from transformation

Running demoInvByCol produces the following output and the plot below.

>> demoInvByCol

Flop counts:

n invByCol inv

2 96 51

4 768 242

8 7040 1412

16 76128 9598

32 952768 70942

64 13163520 545040

128 194685952 4276376

exponent O(3.8) O(2.9)

The invByCol function is clearly less efficient than the built-in inv function. The measured flops
exponent for the inv function is close to the theoretical value of 3. The measured flops exponent
for invByCol is somewhat less than the expected value of 4. The discrepancies are likely caused by
the relatively small values of n used, and the way that Matlab counts the flops for the backslash
operator.

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of unknowns

flo
ps

invByCol flops
fit
inv flops
fit

Exercise 8–21. Flop counts
for invByCol and inv.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 8: Solving Systems of Equations 9

Extra Credit: The most costly phase of invByCol is repeatedly solving Ax = e(j). Rewrite the
invByCol function to use LU factorization to reduce the computational work. Factor matrix A once,
then (inside a loop) use triangular solves to produce each column of I. Compare the flop count of
your new function with the original version of invByCol.

The extra credit solution is implemented in the invByColLU and demoInvByColLU functions (neither
are listed here). Running demoInvByColLU gives

>> demoInvByColLU

Flop counts:

n invByCol inv invByColLU

2 100 51 35

4 752 242 226

8 7168 1444 1588

16 77216 9594 11816

32 950400 70836 90960

64 13186432 545124 713376

128 194873088 4275098 5649728

exponent O(3.7) O(2.9) O(3.0)

The invByColLU function obtains the exact flops exponent value of 3 that is predicted by the order
of magnitude work estimates. The built-in inv function uses the ideas embodied in invByColLU to
compute A(−1).

8.25 An alternative way to resolve the singularity in the 3× 3 coefficient matrix of Example 8.5 is
to modify the elements of the matrix. Write a trivial equation involving vb, vc, and vd that has the
solution vd = 0. Use this equation to replace the equation for vd in the 3×3 system in Example 8.5.
What is the value of Vout for R1 = R3 = R4 = R5 = 10 kΩ, R2 = 20 kΩ and Vin = 5V .

Partial Solution: The trivial equation with the solution vd = 0 is (0)vb + (0)vc + (1)vd = 0, or
vd = 0.

8.33 Use the pumpCurve function developed in Exercise 32 to study the effect of perturbing the
input data. Specifically, replace the second h value, h = 114.2, with h = 114, and re-evaluate
the coefficients of the cubic interpolating polynomial. Let c̃ be the coefficients of the interpolating
polynomial derived from the perturbed data, and let c be the coefficients of the polynomial derived
from the original data. What is the relative difference, (c̃i − ci)/ci, in each of the polynomial
coefficients? Evaluate and plot h(q) for the two cubic interpolating polynomials at 100 data points
in the range min(q) ≤ q ≤ max(q). What is the maximum difference in h for the interpolants derived
from the original and the perturbed data? Discuss the practical significance of the effect perturbing
the data on the values of c and the values of h obtained from the interpolant.

Partial Solution: The computations are carried out in pumpPerturb (not listed here). Running
pumpPerturb gives the following output and plot..

>> pumpPerturb

Coefficients of cubic interpolant in descending powers of q:

i c(i) ct(i) percent diff

1 -1.1870738e+10 -1.3978775e+10 17.8

2 1.0361305e+07 1.5209790e+07 46.8

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

10 Solving Systems of Equations

3 -7.8023933e+03 -1.0627163e+04 36.2

4 1.1568850e+02 1.1592460e+02 0.2

Maximum difference of h values = 0.253 (m) occurs at q = 3.89e-04

Condition numbers: kappa(A) = 2.7e+10; kappa(At) = 2.7e+10

c(i) are the coefficients of the cubic polynomial derived from the unperturbed data. ct(i) are the
coefficients derived from the perturbed data. Although the coefficients have very large differences in
magnitude, the values of the interpolants have a maximum difference of only 0.25 m in head. The
perturbation has no significant effect on the condition number of the Vandermonde system.

0 0.5 1 1.5

x 10
-3

90

95

100

105

110

115

120

Flow rate (m3/s)

H
ea

d
 (

m
)

Data
Original interpolant
Perturbed interpolant
point of max difference

Exercise 8–33. Interpolants
from original and perturbed h
data.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

