
Selected Solutions for Exercises in

Numerical Methods with Matlab:
Implementations and Applications

Gerald W. Recktenwald

Chapter 6

Finding the Roots of f(x) = 0

The following pages contain solutions to selected end-of-chapter Exercises
from the book Numerical Methods with Matlab: Implementations and
Applications, by Gerald W. Recktenwald, c© 2000, Prentice-Hall, Upper
Saddle River, NJ. The solutions are c© 2000 Gerald W. Recktenwald. The
PDF version of the solutions may be downloaded or stored or printed only
for noncommercial, educational use. Repackaging and sale of these solutions
in any form, without the written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material
for the book, can be found at www.prenhall.com/recktenwald.

2 Finding the Roots of f(x) = 0

6–2 The function f(x) = sin(x2) + x2 − 2x− 0.09 has four roots in the interval −1 ≤ x ≤ 3. Given
the m-file fx.m, which contains

function f = fx(x)

f = sin(x.^2) + x.^2 - 2*x - 0.09;

the statement

>> brackPlot(’fx’,-1,3)

produces only two brackets. Is this result due to a bug in brackPlot or fx? What needs to
be changed so that all four roots are found? Demonstrate that your solution works.
Partial Solution: The statement

>> Xb = brackPlot(’fx’,-1,3)

Xb =

-0.1579 0.0526

2.1579 2.3684

returns two brackets. A close inspection of the plot of f(x) reveals that f(x) crosses the x-axis
twice near x = 1.3. These two roots are missed by brackPlot because there default search
interval is too coarse. There is no bug in brackPlot. Implementing a solution using a finer
search interval is left as an exercise.

6–11 Use the bisect function to evaluate the root of the Colebrook equation (see Exercise 8)
for ε/D = 0.02 and Re = 105. Do not modify bisect.m. This requires that you write an
appropriate function m-file to evaluate the Colebrook equation.
Partial Solution: Using bisect requires writing an auxiliary function to evaluate the Cole-
brook equation in the form F (f) = 0, where f is the friction factor. The following form of
F (f) is used in the colebrkz function listed below.

F (f) =
1√
f
+ 2 log10

(
ε/D

3.7
+

2.51
ReD

√
f

)

Many other forms of F (f) will work.

function ff = colebrkz(f)

% COLEBRKZ Evaluates the Colebrook equation in the form F(f) = 0

% for use with root-finding routines.

%

% Input: f = the current guess at the friction factor

%

% Global Variables:

% EPSDIA = ratio of relative roughness to pipe diameter

% REYNOLDS = Reynolds number based on pipe diameter

%

% Output: ff = the "value" of the Colebrook function written y = F(f)

% Global variables allow EPSDIA and REYNOLDS to be passed into

% colebrkz while bypassing the bisect.m or fzero function

global EPSDIA REYNOLDS

ff = 1.0/sqrt(f) + 2.0*log10(EPSDIA/3.7 + 2.51/(REYNOLDS*sqrt(f)));

Because the bisect function (unlike fzero) does not allow additional parameters to be passed
through to the F (f) function, the values of ε/D and Re are passed to colebrkz via global
variables. Running bisect with colebrkz is left to the reader. For Re = 1 × 105 and
ε/D = 0.02 the solution is f = 0.0490.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 6: Finding the Roots of f(x) = 0 3

6–13 Derive the g3(x) functions in Example 6.4 and Example 6.5. (Hint : What is the fixed-point
formula for Newton’s method?)

Partial Solution: The fixed point iteration formulas designated as g3(x) in Example 6.4
and Example 6.5 are obtained by applying Newton’s method. The general form of Newton’s
method for a scalar variable is

xk+1 = xk − f(xk)
f ′(xk)

Example 6.4: The f(x) function and its derivative are

f(x) = x − x1/3 − 2 f ′(x) = 1− 1
3
x−2/3

Substituting these expressions into the formula for Newton’s method and simplifying gives

xk+1 = xk − xk − x
1/3
k − 2

1− (1/3)x−2/3
k

=
xk(1− (1/3)x−2/3

k)− (xk − x
1/3
k − 2)

1− (1/3)x−2/3
k

=
xk − (1/3)x1/3

k − xk + x
1/3
k + 2

1− (1/3)x−2/3
k

=
(2/3)x1/3

k + 2

1− (1/3)x−2/3
k

=
2x1/3

k + 6

3− x
−2/3
k

Repeating this analysis for Example 6.5 is left as an exercise.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

4 Finding the Roots of f(x) = 0

6–17 K. Wark and D. E. Richards (Thermodynamics, 6th ed., 1999, McGraw-Hill, Boston, Example
14-2, pp. 768–769) compute the equilibrium composition of a mixture of carbon monoxide and
oxygen gas at one atmosphere. Determining the final composition requires solving

3.06 =
(1− x)(3 + x)1/2

x(1 + x)1/2

for x. Obtain a fixed-point iteration formula for finding the roots of this equation. Implement
your formula in a Matlab function and use your function to find x. If your formula does not
converge, develop one that does.

Partial Solution: One fixed point iteration formula is obtained by isolating the factor of
(3 + x) in the numerator.

3.06x(1 + x)1/2

1− x
= (3 + x)1/2 =⇒ x =

[
3.06x(1 + x)1/2

1− x

]2

− 3

=⇒ g1(x) =
[
3.06x(1 + x)1/2

1− x

]2

− 3

Another fixed point iteration formula is obtained by solving for the isolated x in the denomi-
nator to get

x =
(1− x)(3 + x)1/2

3.06(1 + x)1/2
=⇒ g2(x) =

(1− x)(3 + x)1/2

3.06(1 + x)1/2

Performing 10 fixed point iterations with g1(x) gives

it xnew

1 -7.6420163e-01

2 -2.5857113e+00

3 -1.0721050e+01

4 -7.9154865e+01

5 -7.1666488e+02

6 -6.6855377e+03

7 -6.2575617e+04

8 -5.8590795e+05

9 -5.4861826e+06

10 -5.1370394e+07

Thus, g1(x) does not converge. The g2(x) function does converge to the true root of x =
0.340327 Matlab implementations of the fixed point iterations are left as an Exercise.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 6: Finding the Roots of f(x) = 0 5

6–24 Create a modified newton function (say, newtonb) that takes a bracket interval as input instead
of a single initial guess. From the bracket limits take one bisection step to determine x0, the
initial guess for Newton iterations. Use the bracket limits to develop relative tolerances on x
and f(x) as in the bisect function in Listing 6.4.

Solution: The newtonb function is listed below. The demoNewtonb function, also listed below,
repeats the calculations in Example 6.8 with the original newton function and with the new
newtonb function.

Running demoNewtonb gives

>> demoNewtonb

Original newton function:

Newton iterations for fx3n.m

k f(x) dfdx x(k+1)

1 -4.422e-01 8.398e-01 3.52664429313903

2 4.507e-03 8.561e-01 3.52138014739733

3 3.771e-07 8.560e-01 3.52137970680457

4 2.665e-15 8.560e-01 3.52137970680457

5 0.000e+00 8.560e-01 3.52137970680457

newtonb function:

Newton iterations for fx3n.m

k f(x) dfdx x(k+1)

1 -4.422e-01 8.398e-01 3.52664429313903

2 4.507e-03 8.561e-01 3.52138014739733

3 3.771e-07 8.560e-01 3.52137970680457

4 2.665e-15 8.560e-01 3.52137970680457

5 0.000e+00 8.560e-01 3.52137970680457

The two implementations of Newton’s method give identical results because the input to
newtonb is the bracket [2, 4]. This causes the initial bisection step to produce the same initial
guess for the Newton iterations that is used in the call to newton.

function demoNewtonb

% demoNewtonb Use newton and newtonb to find the root of f(x) = x - x^(1/3) - 2

%

% Synopsis: demoNewton

%

% Input: none

%

% Output print out of convergence history, and comparison of methods

fprintf(’\nOriginal newton function:\n’);

r = newton(’fx3n’,3,5e-16,5e-16,1);

fprintf(’\nnewtonb function:\n’);

rb = newtonb(’fx3n’,[2 4],5e-16,5e-16,1);

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

6 Finding the Roots of f(x) = 0

function r = newtonb(fun,x0,xtol,ftol,verbose)

% newtonb Newton’s method to find a root of the scalar equation f(x) = 0

% Initial guess is a bracket interval

%

% Synopsis: r = newtonb(fun,x0)

% r = newtonb(fun,x0,xtol)

% r = newtonb(fun,x0,xtol,ftol)

% r = newtonb(fun,x0,xtol,ftol,verbose)

%

% Input: fun = (string) name of mfile that returns f(x) and f’(x).

% x0 = 2-element vector providing an initial bracket for the root

% xtol = (optional) absolute tolerance on x. Default: xtol=5*eps

% ftol = (optional) absolute tolerance on f(x). Default: ftol=5*eps

% verbose = (optional) flag. Default: verbose=0, no printing.

%

% Output: r = the root of the function

if nargin < 3, xtol = 5*eps; end

if nargin < 4, ftol = 5*eps; end

if nargin < 5, verbose = 0; end

xeps = max(xtol,5*eps); feps = max(ftol,5*eps); % Smallest tols are 5*eps

if verbose

fprintf(’\nNewton iterations for %s.m\n’,fun);

fprintf(’ k f(x) dfdx x(k+1)\n’);

end

xref = abs(x0(2)-x0(1)); % Use initial bracket in convergence test

fa = feval(fun,x0(1));

fb = feval(fun,x0(2));

fref = max([abs(fa) abs(fb)]); % Use max f in convergence test

x = x0(1) + 0.5*(x0(2)-x0(1)); % One bisection step for initial guess

k = 0; maxit = 15; % Current and max iterations

while k <= maxit

k = k + 1;

[f,dfdx] = feval(fun,x); % Returns f(x(k-1)) and f’(x(k-1))

dx = f/dfdx;

x = x - dx;

if verbose, fprintf(’%3d %12.3e %12.3e %18.14f\n’,k,f,dfdx,x); end

if (abs(f/fref) < feps) | (abs(dx/xref) < xeps), r = x; return; end

end

warning(sprintf(’root not found within tolerance after %d iterations\n’,k));

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 6: Finding the Roots of f(x) = 0 7

6–27 Implement the secant method using Algorithm 6.5 and Equation (6.13). Test your program
by re-creating the results in Example 6.10. What happens if 10 iterations are performed?
Replace the formula in Equation (6.13) with

xk+1 = xk − f(xk)
[

(xk − xk−1)
f(xk)− f(xk−1) + ε

]
,

where ε is a small number on the order of εm. How and why does this change the results?

Partial Solution: The demoSecant function listed below implements Algorithm (6.5) using
Equation (6.13). The f(x) function, Equation 6.3, is hard-coded into demoSecant. Note also
that demoSecant performs ten iterations without checking for convergence.

function demoSecant(a,b);

% demoSecant Secant method for finding the root of f(x) = x - x^(1/3) - 2 = 0

% Implement Algorithm 6.5, using Equation (6.13)

%

% Synopsis: demoSecant(a,b)

%

% Input: a,b = initial guesses for the iterations

%

% Output: print out of iterations; no return values.

% copy initial guesses to local variables

xk = b; % x(k)

xkm1 = a; % x(k-1)

fk = fx3(b); % f(x(k))

fkm1 = fx3(a); % f(x(k-1))

fprintf(’\nSecant method: Algorithm 6.5, Equation (6.13) \n’);

fprintf(’ n x(k-1) x(k) f(x(k))\n’);

fprintf(’%3d %12.8f %12.8f %12.5e\n’,0,xkm1,xk,fk);

for n=1:10

x = xk - fk*(xk-xkm1)/(fk - fkm1); % secant formula for updating the root

f = fx3(x);

fprintf(’%3d %12.8f %12.8f %12.5e\n’,n,xk,x,f);

xkm1 = xk; xk = x; % set-up for next iteration

fkm1 = fk; fk = f;

end

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

8 Finding the Roots of f(x) = 0

Running demoSecant with an initial bracket of [3, 4] (the same bracket used in Example 6.10)
gives

>> demoSecant(3,4)

Secant method: Algorithm 6.5, Equation (6.13)

n x(k-1) x(k) f(x(k))

0 3.00000000 4.00000000 4.12599e-01

1 4.00000000 3.51734262 -3.45547e-03

2 3.51734262 3.52135125 -2.43598e-05

3 3.52135125 3.52137971 1.56730e-09

4 3.52137971 3.52137971 -8.88178e-16

5 3.52137971 3.52137971 -2.22045e-16

6 3.52137971 3.52137971 0.00000e+00

7 3.52137971 3.52137971 0.00000e+00

Warning: Divide by zero.

> In /werk/MATLAB_Book/SolutionManual/roots/mfiles/demoSecant.m at line 22

8 3.52137971 NaN NaN

9 NaN NaN NaN

10 NaN NaN NaN

The secant method has fully converged in 6 iterations. Continuing the calculations beyond
convergence gives a floating point exception because f(xk)− f(xk−1) = 0 in the denominator
of Equation (6.13). In general, it is possible to have f(xk) − f(xk−1) = 0 before the secant
iterations reach convergence. Thus, the floating point exception exposed by demoSecant should
be guarded against in any implementation of the secant method.

Implementing the fix suggested in the problem statement is left as an exercise for the reader.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

Chapter 6: Finding the Roots of f(x) = 0 9

6–33 Write an m-file function to compute h, the depth to which a sphere of radius r, and specific
gravity s, floats. (See Example 6.12 on page 281.) The inputs are r and s, and the output is
h. Only compute h when s < 0.5. The s ≥ 0.5 case is dealt with in the following Exercise.
If s ≥ 0.5 is input, have your function print an error message and stop. (The built-in error
function will be useful.) Your function needs to include logic to select the correct root from
the list of values returned by the built-in roots function.

Partial Solution: The floata function listed below performs the desired computations. We
briefly discuss three of the key statements in floata The coefficients of the polynomial are
stored in the p vector. Then

c = getreal(roots(p));

finds the real roots of the polynomial. The getreal subfunction returns only the real elements
of a vector. Using getreal is a defensive programming strategy. The sample calculation in
Example 6.12 obtained only real roots of the polynomial, so getreal would not be necessary
in that case. The

k = find(c>0 & c<r);

statement extracts the indices in the c vector satisfying the criteria 0 ≤ ck ≤ r. Then

h = c(k);

copies those roots satisfying the criteria to the h vector. No assumption is made that only
one root meets the criteria. If more than one root is found a warning message is issued before
leaving floata.

Testing of floata is left to the reader.

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

10 Finding the Roots of f(x) = 0

function h = floata(r,s)

% float Find water depth on a floating, solid sphere with specific gravity < 0.5

%

% Synopsis: h = floata(r,s)

%

% Input: r = radius of the sphere

% s = specific gravity of the sphere (0 < s < 1)

%

% Output: h = depth of the sphere

if s>=0.5

error(’s<0.5 required in this version’)

else

p = [1 -3*r 0 4*s*r^3]; % h^3 - 3*r*h + 4*s*r^3 = 0

c = getreal(roots(p));

k = find(c>0 & c<r); % indices of elements in c such that 0 < c(k) < r

h = c(k); % value of elements in c satisfying above criterion

end

if length(h)>1, warning(’More than one root found’); end

% ==============================

function cr = getreal(c)

% getreal Copy all real elements of input vector to output vector

%

% Synopsis: cr = getreal(c)

%

% Input: c = vector of numerical values

%

% Output cr = vector of only the real elements of c

% cr = [] if c has only imaginary elements

n = 0;

for k=1:length(c)

if isreal(c(k))

n = n + 1;

cr(n) = c(k);

end

end

if n==0, cr = []; warning(’No real elements in the input vector’); end

Copyright c© 2000, Gerald W. Recktenwald. Photocopying is permitted only for non-commercial educational purposes.

