
Numerical Integration of Ordinary Differential Equations
for Initial Value Problems

Gerald Recktenwald

Portland State University

Department of Mechanical Engineering

gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with
Matlab: Implementations and Applications, by Gerald W. Recktenwald,
c© 2000–2006, Prentice-Hall, Upper Saddle River, NJ. These slides are

copyright c© 2000–2006 Gerald W. Recktenwald. The PDF version
of these slides may be downloaded or stored or printed only for
noncommercial, educational use. The repackaging or sale of these
slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material
for the book, can be found at www.prenhall.com/recktenwald or
web.cecs.pdx.edu/~gerry/nmm/.

Version 0.92 August 22, 2006

page 1

Overview

• Motivation: ODE’s arise as models of many applications

• Euler’s method

� A low accuracy prototype for other methods

� Development

� Implementation

� Analysis

• Midpoint method

• Heun’s method

• Runge-Kutta method of order 4

• Matlab’s adaptive stepsize routines

• Systems of equations

• Higher order ODEs

NMM: Integration of ODEs page 2

Application: Newton’s Law of Motion

Newton’s Law of Motion is

F = ma

Acceleration is the time derivative of velocity, so

dv

dt
= a

and
dv

dt
=

F

m

If F (t) and v(0) are known, we can (at least in principle) integrate the preceding

equation to find v(t)

NMM: Integration of ODEs page 3

Application: Newton’s Law of Cooling

The cooling rate of an object immersed

in a flowing fluid is

Q = hA(Ts − T∞)

where Q is the heat transfer rate, h is the

heat transfer coefficient, A is the surface

area, Ts is the surface temperature, and

T∞ is the temperature of the fluid.

When the cooling rate is primarily

controlled by the convection from the

surface, the variation of the object’s

temperature with is described by an

ODE.

T∞

m, c

NMM: Integration of ODEs page 4

Newton’s Law of Cooling

Apply an energy balance

mc
dT

dt
= −Q = −hA(Ts − T∞)

Assume material is highly conductive ⇒ Ts = T

mc
dT

dt
= −hA(T − T∞)

or
dT

dt
= −hA

mc
(T − T∞)

NMM: Integration of ODEs page 5

Example: Analytical Solution

The ODE
dy

dt
= −y y(0) = y0

can be integrated directly:

dy

y
= −dt

ln y = −t + C

ln y − ln C2 = −t

ln
y

C2

= −t

y = C2e
−t

y = y0e
−t

NMM: Integration of ODEs page 6

Numerical Integration of First Order ODEs (1)

The generic form of a first order ODE is

dy

dt
= f(t, y); y(0) = y0

where the right hand side f(t, y) is any single-valued function of t and y.

The approximate numerical solution is obtained at discrete values of t

tj = t0 + jh

where h is the “stepsize”

NMM: Integration of ODEs page 7

Numerical Integration of ODEs (2)

Graphical Interpretation

y0

t0

f (t0,y0) = slope at (t0,y0)

exact solution y(t)

numerical solution at t3

t1 t2 t3

h h h

NMM: Integration of ODEs page 8

Nomenclature

y(t) = exact solution

y(tj) = exact solution evaluated at tj

yj = approximate solution at tj

f(tj, yj) = approximate r.h.s. at tj

NMM: Integration of ODEs page 9

Euler’s Method (1)

Consider a Taylor series expansion in the neighborhood of t0

y(t) = y(t0) + (t − t0)
dy

dt

˛̨̨
˛
t0

+
(t − t0)

2

2

d2y

dt2

˛̨
˛̨
˛
t0

+ . . .

Retain only first derivative term and define

f(t0, y0) ≡ dy

dt

˛̨
˛̨
t0

to get

y(t) ≈ y(t0) + (t − t0)f(t0, y0)

NMM: Integration of ODEs page 10

Euler’s Method (2)

Given h = t1 − t0 and initial condition, y = y(t0), compute

y1 = y0 + h f(t0, y0)

y2 = y1 + h f(t1, y1)

... ...

yj+1 = yj + h f(tj, yj)

or

yj = yj−1 + h f(tj−1, yj−1)

NMM: Integration of ODEs page 11

Example: Euler’s Method

Use Euler’s method to integrate

dy

dt
= t − 2y y(0) = 1

The exact solution is

y =
1

4

h
2t − 1 + 5e

−2t
i

Euler Exact Error

j tj f(tj−1, yj−1) yj = yj−1 + h f(tj−1, yj−1) y(tj) yj − y(tj)

0 0.0 NA (initial condition) 1.0000 1.0000 0

1 0.2 0 − (2)(1) = −2.000 1.0 + (0.2)(−2.0) = 0.6000 0.6879 −0.0879

2 0.4 0.2 − (2)(0.6) = −1.000 0.6 + (0.2)(−1.0) = 0.4000 0.5117 −0.1117

3 0.6 0.4 − (2)(0.4) = −0.400 0.4 + (0.2)(−0.4) = 0.3200 0.4265 −0.1065

NMM: Integration of ODEs page 12

Reducing Stepsize Improves Accuracy (1)

Use Euler’s method to integrate

dy

dt
= t − 2y; y(0) = 1

for a sequence of smaller h (see

demoEuler).
For a given h, the largest error in

the numerical solution is the Global

Discretization Error or GDE.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y

Exact
h = 0.2
h = 0.1
h = 0.05

NMM: Integration of ODEs page 13

Reducing Stepsize Improves Accuracy (2)

Local error at any time step is

ej = yj − y(tj)

where y(tj) is the exact solution

evaluated at tj.

GDE = max(ej), j = 1, . . .

For Euler’s method, GDE decreases

linearly with h.

Here are results for the sample problem

plotted on previous slide:

dy/dt = t − 2y; y(0) = 1

h max(ej)

0.200 0.1117

0.100 0.0502

0.050 0.0240

0.025 0.0117

NMM: Integration of ODEs page 14

Implementation of Euler’s Method

function [t,y] = odeEuler(diffeq,tn,h,y0)
% odeEuler Euler’s method for integration of a single, first order ODE
%
% Synopsis: [t,y] = odeEuler(diffeq,tn,h,y0)
%
% Input: diffeq = (string) name of the m-file that evaluates the right
% hand side of the ODE written in standard form
% tn = stopping value of the independent variable
% h = stepsize for advancing the independent variable
% y0 = initial condition for the dependent variable
%
% Output: t = vector of independent variable values: t(j) = (j-1)*h
% y = vector of numerical solution values at the t(j)

t = (0:h:tn)’; % Column vector of elements with spacing h
n = length(t); % Number of elements in the t vector
y = y0*ones(n,1); % Preallocate y for speed

% Begin Euler scheme; j=1 for initial condition
for j=2:n

y(j) = y(j-1) + h*feval(diffeq,t(j-1),y(j-1));
end

NMM: Integration of ODEs page 15

Analysis of Euler’s Method (1)

Rewrite the discrete form of Euler’s method as

yj − yj−1

h
= f(tj−1, yj−1) (discrete)

Compare with original ODE
dy

dt
= f(t, y) (continuous)

Substitute the exact solution into the discrete approximation to the ODE to get

y(tj) − y(tj−1)

h
− f(tj−1, y(tj−1)) �= 0

NMM: Integration of ODEs page 16

Analysis of Euler’s Method (2)

Introduce a family of functions zj(t), which are the exact solutions to the ODE given the

approximiate solution produced by Euler’s method at step j.

dzj

dt
= f(t, y); zj(tj−1) = yj−1

Due to truncation error, Euler’s method produces a value of yj+1 that is different from

zj(tj+1) even though by design, yj = z(tj).

In other words

yj+1 − z(tj+1) �= 0

because yj+1 contains truncation error.

NMM: Integration of ODEs page 17

Analysis of Euler’s Method (3)

Example: Solve

dy

dt
= t − 2y; y(0) = 1

The plot shows the numerical solution

(•) obtained with h = 0.5. The z(t)

curve starting at each of the numerical

solution points is shown as a solid line.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y
 a

nd
 z

y(t)
exact

z2(t)

z3(t)

z1(t)

NMM: Integration of ODEs page 18

Analysis of Euler’s Method (4)

The local discretization error (LDE) is the residual obtained when the exact zj(t) is

substituted into the discrete approximation to the ODE

τ(t, h) =
z(tj) − z(tj−1)

h
− f(tj−1, zj(tj−1))

Note:

• User chooses h, and this affects LDE

• LDE also depends on t, the position in the interval

NMM: Integration of ODEs page 19

Analysis of Euler’s Method (5)

Using a Taylor series expansion for zj(x) we find that

z(tj) − z(tj−1)

h
− f(tj−1, zj(tj−1)) =

h

2
z
′′
j (ξ)

where tj−1 ≤ ξ ≤ tj and z′′
j ≡ d2zj/dt2.

Thus, for Euler’s method the local discretization error is

τ(t, h) =
h

2
z
′′
j (ξ)

Since ξ is not known, the value of z′′
j (ξ) cannot be computed.

NMM: Integration of ODEs page 20

Analysis of Euler’s Method (6)

Assume that z′′
j (ξ) is bounded by M in the interval t0 ≤ t ≤ tN . Then

τ(t, h) ≤ hM

2
LDE for Euler’s method

Although M is unknown we can still compute the effect of reducing the stepsize by taking

the ratio of τ(t, h) for two different choices of h

τ(t, h2)

τ(t, h1)
=

h2

h1

NMM: Integration of ODEs page 21

Global Discretization Error for Euler’s Method

General application of Euler’s method requires several steps to compute the solution to

the ODE in an interval, t0 ≤ t ≤ tN . The local truncation error at each step

accumulates. The result is the global discretization error (GDE)

The GDE for Euler’s method is O(h). Thus

GDE(h1)

GDE(h2)
=

h1

h2

NMM: Integration of ODEs page 22

Summary of Euler’s Method

Development of Euler’s method has demonstrated the following general ideas

• The numerical integration scheme is derived from a truncated Taylor series

approximation of the ODE.

• The local discretization error (LDE) accounts for the error at each time step.

LDE = O(h
p
)

where h is the stepsize and p is an integer p ≥ 1.

• The global discretization error (GDE) includes the accumulated effect of the LDE when

the ODE integration scheme is applied to an interval using several steps of size h.

GDE = O(h
p
)

• The implementation separates the logic of the ODE integration scheme from the

evaluation of the right hand side, f(t, y). A general purpose ODE solver requires the

user to supply a small m-file for evaluating f(t, y).

NMM: Integration of ODEs page 23

Higher Order Methods

We now commence a survey of one-step methods that are more accurate than Euler’s

method.

• Not all methods are represented here

• Objective is a logical progression leading to RK-4

• Sequence is in order of increasing accuracy and increasing computational efficiency

Methods with increasing accuracy, lower GDE

Method GDE

Euler O(h)

Midpoint O(h2)

Heun O(h2)

RK-4 O(h4)

Note that since h < 1, a GDE of O(h4) is much smaller than a GDE of O(h).

NMM: Integration of ODEs page 24

Midpoint Method (1)

Increase accuracy by evaluating slope twice in each step of size h

k1 = f(tj, yj)

Compute a tentative value of y at the midpoint

yj+1/2 = yj +
h

2
f(tj, yj)

re-evaluate the slope

k2 = f(tj +
h

2
, yj +

h

2
k1)

Compute final value of y at the end of the full interval

yj+1 = yj + hk2

LDE = GDE = O(h2)

NMM: Integration of ODEs page 25

Midpoint Method (2)

yj–1

tj–1

yj from Euler’s method

tj

0.5h 0.5h

true solution for the given yj–1

estimate of slope
at tj–1 + 0.5h

yj from midpoint method

yj–1 + 0.5 h k1

NMM: Integration of ODEs page 26

function [t,y] = odeMidpt(diffeq,tn,h,y0)
% odeMidpt Midpoint method for integration of a single, first order ODE
%
% Synopsis: [t,y] = odeMidpt(diffeq,tn,h,y0)
%
% Input: diffeq = (string) name of the m-file that evaluates the right
% hand side of the ODE written in standard form
% tn = stopping value of the independent variable
% h = stepsize for advancing the independent variable
% y0 = initial condition for the dependent variable
%
% Output: t = vector of independent variable values: t(j) = (j-1)*h
% y = vector of numerical solution values at the t(j)

t = (0:h:tn)’; % Column vector of elements with spacing h
n = length(t); % Number of elements in the t vector
y = y0*ones(n,1); % Preallocate y for speed
h2 = h/2; % Avoid repeated evaluation of this constant

% Begin Midpoint scheme; j=1 for initial condition
for j=2:n

k1 = feval(diffeq,t(j-1),y(j-1));
k2 = feval(diffeq,t(j-1)+h2,y(j-1)+h2*k1);
y(j) = y(j-1) + h*k2;

end

NMM: Integration of ODEs page 27

Midpoint Method (3)

Midpoint method requires twice as much work per time step. Does the extra effort pay

off?

Consider integration with Euler’s method and h = 0.1. Formal accuracy is O(0.1).

Repeat calculations with the midpoint method and h = 0.1. Formal accuracy is

O(0.01).

For Euler’s method to obtain the same accuracy, the stepsize would have to be reduced by

a factor of 10. The midpoint method, therefore, achieves the same (formal) accuracy with

one fifth the work!

NMM: Integration of ODEs page 28

Comparison of Midpoint Method with Euler’s Method

Solve
dy

dt
= −y; y(0) = 1; 0 ≤ t ≤ 1

The exact solution is y = e−t.

>> compEM

h nrhsE errE nrhsM errM
0.20000 6 4.02e-02 12 2.86e-03
0.10000 11 1.92e-02 22 6.62e-04
0.05000 21 9.39e-03 42 1.59e-04
0.02500 41 4.65e-03 82 3.90e-05
0.01250 81 2.31e-03 162 9.67e-06
0.00625 161 1.15e-03 322 2.41e-06

For comparable accuracy:
➣ Midpoint method with h = 0.2 evaluates the right hand side of the ODE 12 times,

and gives max error of 2.86 × 10−3

➣ Euler’s method with h = 0.0125 evaluates the right hand side of the ODE 81 times,

and gives max error of 2.31 × 10−3

NMM: Integration of ODEs page 29

Heun’s Method (1)

Compute the slope at the starting point

k1 = f(tj, yj)

Compute a tentative value of y at the endpoint

y
∗
j = yj + hf(tj, yj)

re-evaluate the slope

k2 = f(tj + h, y
∗
j) = f(tj + j, yj + hk1)

Compute final value of y with an average of the two slopes

yj+1 = yj + h
k1 + k2

2

LDE = GDE = O(h2)

NMM: Integration of ODEs page 30

Heun’s Method (2)

yj–1

tj–1

yj from Euler’s method

tj

h

estimate of slope at tj yj from Heun’s method

true solution for the given yj–1

NMM: Integration of ODEs page 31

Summary So Far

➣ Euler’s method evaluates slope at beginning of the step

➣ Midpoint method evaluates slope at beginning and at midpoint of the step

➣ Heun’s method evaluates slope at beginning and at end of step

Can we continue to get more accurate schemes by evaluating the slope at more points in

the interval? Yes, but there is a limit beyond which additional evaluations of the slope

increase in cost (increased flops) faster than the improve the accuracy.

NMM: Integration of ODEs page 32

Runge-Kutta Methods

Generalize the idea embodied in Heun’s method. Use a weighted average of the slope

evaluated at multiple in the step

yj+1 = yj + h
X

γmkm

where γm are weighting coefficients and km are slopes evaluated at points in the interval

tj ≤ t ≤ tj+1

In general, X
γm = 1

NMM: Integration of ODEs page 33

Fourth Order Runge-Kutta

Compute slope at four places within each step

k1 = f(tj, yj)

k2 = f(tj +
h

2
, yj +

h

2
k1)

k3 = f(tj +
h

2
, yj +

h

2
k2)

k4 = f(tj + h, yj + hk3)

Use weighted average of slopes to obtain yj+1

yj+1 = yj + h

„
k1

6
+

k2

3
+

k3

3
+

k4

6

«

LDE = GDE = O(h4)

NMM: Integration of ODEs page 34

Fourth Order Runge-Kutta

yj –1

tj –1
tj

0.5h

1

2

3

4

0.5h

true solution for the given yj –1

NMM: Integration of ODEs page 35

function [t,y] = odeRK4(diffeq,tn,h,y0)
% odeRK4 Fourth order Runge-Kutta method for a single, first order ODE
%
% Synopsis: [t,y] = odeRK4(fun,tn,h,y0)
%
% Input: diffeq = (string) name of the m-file that evaluates the right
% hand side of the ODE written in standard form
% tn = stopping value of the independent variable
% h = stepsize for advancing the independent variable
% y0 = initial condition for the dependent variable
%
% Output: t = vector of independent variable values: t(j) = (j-1)*h
% y = vector of numerical solution values at the t(j)

t = (0:h:tn)’; % Column vector of elements with spacing h
n = length(t); % Number of elements in the t vector
y = y0*ones(n,1); % Preallocate y for speed
h2 = h/2; h3 = h/3; h6 = h/6; % Avoid repeated evaluation of constants

% Begin RK4 integration; j=1 for initial condition
for j=2:n

k1 = feval(diffeq, t(j-1), y(j-1));
k2 = feval(diffeq, t(j-1)+h2, y(j-1)+h2*k1);
k3 = feval(diffeq, t(j-1)+h2, y(j-1)+h2*k2);
k4 = feval(diffeq, t(j-1)+h, y(j-1)+h*k3);
y(j) = y(j-1) + h6*(k1+k4) + h3*(k2+k3);

end

NMM: Integration of ODEs page 36

Comparison of Euler, Midpoint and RK4 (1)

Solve
dy

dt
= −y; y(0) = 1; 0 ≤ t ≤ 1

>> compEMRK4

h nrhsE errE nrhsM errM nrhsRK4 err4
0.20000 6 4.02e-02 12 2.86e-03 24 5.80e-06
0.10000 11 1.92e-02 22 6.62e-04 44 3.33e-07
0.05000 21 9.39e-03 42 1.59e-04 84 2.00e-08
0.02500 41 4.65e-03 82 3.90e-05 164 1.22e-09
0.01250 81 2.31e-03 162 9.67e-06 324 7.56e-11
0.00625 161 1.15e-03 322 2.41e-06 644 4.70e-12

NMM: Integration of ODEs page 37

Comparison of Euler, Midpoint and RK4 (2)

Error step size

RHS

evaluations

Euler 1.2 × 10−3 0.00625 161

Midpoint 2.9 × 10−3 0.2 12

Midpoint 2.4 × 10−6 0.00625 322

RK-4 5.8 × 10−6 0.2 24

Conclusion:

➣ RK-4 is much more accurate (smaller GDE) than Midpoint or Euler

➣ Although RK-4 takes more flops per step, it can achieve comparable accuracy with

much larger time steps. The net effect is that RK-4 is more accurate and more
efficient

NMM: Integration of ODEs page 38

Summary: Accuracy of ODE Integration Schemes

• GDE decreases as h decreases

• Need an upper limit on h to achieve a desired accuracy

• Example: Euler’s Method

yj = yj−1 + h f(tj−1, yj−1)

when h and |f(tj, yj)| are large, the change in y is large

• The product, h f(tj, yj), determines accuracy

NMM: Integration of ODEs page 39

Procedure for Using Algorithms Having Fixed Stepsize

• Develop an m-file to evaluate the right hand side

• Use a high order method, e.g. RK-4

• Compare solutions for a sequence of smaller h

• When the change in the solution between successively smaller h is “small enough”,

accept that as the h-independent solution.

The goal is to obtain a solution that does not depend (in a significant way) on h.

NMM: Integration of ODEs page 40

Adaptive Stepsize Algorithms

Let the solution algorithm determine h at each time step

• Set a tolerance on the error

• When |f(tj−1, yj−1)| is decreases, increase h to increase efficiency and decrease

round-off

• When |f(tj−1, yj−1)| is increases, decrease h to maintain accuracy

NMM: Integration of ODEs page 41

Adaptive Stepsize Algorithms (2)

How do we find the “error” at each step in order to judge whether the stepsize needs to

be reduced or increased?

Two related strategies:

➣ Use two h values at each step:

1. Advance the solution with h = h1

2. Advance the solution with two steps of size h2 = h/2

3. If solutions are close enough, accept the h1 solution, stop

4. Otherwise, replace h1 = h2, go back to step 2

➣ Use embedded Runge-Kutta methods

NMM: Integration of ODEs page 42

Embedded Runge-Kutta Methods (1)

There is a pair of RK methods that use the same six k values

Fourth Order RK:

yj+1 = yj + c1k1 + c2k2 + c3k3

+ c4k4 + c5k5 + c6k6 + O(h
4
)

Fifth Order RK:

y
∗
j+1 = yj + c

∗
1k1 + c

∗
2k2 + c

∗
3k3

+ c
∗
4k4 + c

∗
5k5 + c

∗
6k6 + O(h

5
)

Therefore, at each step an estimate of the truncation error is

Δ = yj+1 − y
∗
j+1

NMM: Integration of ODEs page 43

Embedded Runge-Kutta Methods (2)

Possible outcomes

• If Δ is smaller than tolerance, accept the yj+1 solution.

• If Δ is much smaller than tolerance, accept the yj+1 solution, and try increasing the

stepsize.

• If Δ is larger than tolerance, reduce h and try again.

NMM: Integration of ODEs page 44

Matlab ode45 Function

• User supplies error tolerance, not stepsize

• Simultaneously compute 4th and 5th order Runge-Kutta solution

• Compare two solutions to determine accuracy

• Adjust step-size so that error tolerance is maintained

NMM: Integration of ODEs page 45

Matlab ode45 Function (2)

Error tolerances are

τ̃ < max(RelTol × |yj|, AbsTol)
where τ̃ is an estimate of the local truncation error, and RelTol and AbsTol are the error

tolerances, which have the default values of

RelTol = 1 × 10
−3 AbsTol = 1 × 10

−6

NMM: Integration of ODEs page 46

Using ode45

Syntax:

[t,Y] = ode45(diffeq,tn,y0)
[t,Y] = ode45(diffeq,[t0 tn],y0)
[t,Y] = ode45(diffeq,[t0 tn],y0,options)
[t,Y] = ode45(diffeq,[t0 tn],y0,options,arg1,arg2,...)

User writes the diffeq m-file to evaluate the right hand side of the ODE.

Solution is controlled with the odeset function

options = odeset(’parameterName’,value,...)
[y,t] = ode45(’rhsFun’,[t0 tN],y0,options,...)

Syntax for ode23 and other solvers is the same.

NMM: Integration of ODEs page 47

Matlab’s Built-in ODE Routines

Function Description

ode113 Variable order solution to nonstiff systems of ODEs. ode113 uses an

explicit predictor-corrector method with variable order from 1 to 13.

ode15s Variable order, multistep method for solution to stiff systems of

ODEs. ode15s uses an implicit multistep method with variable

order from 1 to 5.

ode23 Lower order adaptive stepsize routine for non-stiff systems of ODEs.

ode23 uses Runge-Kutta schemes of order 2 and 3.

ode23s Lower order adaptive stepsize routine for moderately stiff systems of

ODEs. ode23 uses Runge-Kutta schemes of order 2 and 3.

ode45 Higher order adaptive stepsize routine for non-stiff systems of ODEs.

ode45 uses Runge-Kutta schemes of order 4 and 5.

NMM: Integration of ODEs page 48

Interpolation Refinement by ode45 (1)

The ode45 function attempts to obtain the solution to within the user-specified error

tolerances. In some situations the solution can be obtained within the tolerance by taking

so few time steps that the solution appears to be unsmooth. To compensate for this,

ode45 automatically interpolates the solution between points that are obtained from the

solver.

Consider
dy

dt
= cos(t), y(0) = 0

The following statements obtain the solution with the default parameters.

>> rhs = inline(’cos(t)’,’t’,’y’);
>> [t,Y] = ode45(rhs,[0 2*pi],0);
>> plot(t,Y,’o’)

(See plot on next slide)

NMM: Integration of ODEs page 49

Interpolation Refinement by ode45 (2)

>> rhs = inline(’cos(t)’,’t’,’y’);
>> [t,Y] = ode45(rhs,[0 2*pi],0);
>> plot(t,Y,’o’)

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

NMM: Integration of ODEs page 50

Interpolation Refinement by ode45 (3)

Repeat without interpolation:

>> options = odeset(’Refine’,1)
>> [t2,Y2] = ode45(rhs,[0 2*pi],0,options);
>> hold on
>> plot(t2,Y2,’rs-’)

The two solutions are identical at

the points obtained from the Runge-

Kutta algorithm

>> max(Y2 - Y(1:4:end))
ans =

0

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

NMM: Integration of ODEs page 51

Coupled ODEs (1)

Consider

dy1

dt
= f1(t, y1, y2)

dy2

dt
= f2(t, y1, y2)

These equations must be advanced simultaneously.

NMM: Integration of ODEs page 52

Coupled ODEs (2)

Apply the 4th Order Runge-Kutta Scheme:

k1,1 = f1
`
tj, yj,1, yj,2

´
k1,2 = f2

`
tj, yj,1, yj,2

´

k2,1 = f1

„
tj +

h

2
, yj,1 +

h

2
k1,1, yj,2 +

h

2
k1,2

«

k2,2 = f2

„
tj +

h

2
, yj,1 +

h

2
k1,1, yj,2 +

h

2
k1,2

«

k3,1 = f1

„
tj +

h

2
, yj,1 +

h

2
k2,1, yj,2 +

h

2
k2,2

«

k3,2 = f2

„
tj +

h

2
, yj,1 +

h

2
k2,1, yj,2 +

h

2
k2,2

«

k4,1 = f1
`
tj + h, yj,1 + hk3,1, yj,2 + hk3,2

´
k4,2 = f2

`
tj + h, yj,1 + hk3,1, yj,2 + hk3,2

´

NMM: Integration of ODEs page 53

Coupled ODEs (3)

Update y1 and y2 only after all slopes are computed

yj+1,1 = yj,1 + h

„
k1,1

6
+

k2,1

3
+

k3,1

3
+

k4,1

6

«

yj+1,2 = yj,2 + h

„
k1,2

6
+

k2,2

3
+

k3,2

3
+

k4,2

6

«

NMM: Integration of ODEs page 54

Example: Predator-Prey Equations

dp1

dt
= α1p1 − δ1p1p2 (prey)

dp2

dt
= α2p1p2 − δ2p2 (preditor)

NMM: Integration of ODEs page 55

Evaluate RHS of Preditor-Prey Model

function dpdt = rhsPop2(t,p,flag,alpha,delta)
% rhsPop2 Right hand sides of coupled ODEs for 2 species predator-prey system
%
% Synopis: dpdt = rhsPop2(t,p,flag,alpha,delta)
%
% Input: t = time. Not used in this m-file, but needed by ode45
% p = vector (length 2) of populations of species 1 and 2
% flag = (not used) placeholder for compatibility with ode45
% alpha = vector (length 2) of growth coefficients
% delta = vector (length 2) of mortality coefficients
%
% Output: dpdt = vector of dp/dt values
dpdt = [alpha(1)*p(1) - delta(1)*p(1)*p(2);

alpha(2)*p(1)*p(2) - delta(2)*p(2);];

NMM: Integration of ODEs page 56

Preditor-Prey Results

0 5 10 15 20 25 30
3000

3500

4000

4500

5000

5500

Pr
ey

 p
op

ul
at

io
n

alpha(1) = 2.000000 delta(1) = 0.020000

0 5 10 15 20 25 30
85

90

95

100

105

110

115

120

time (arbitrary units)

Pr
ed

at
or

 p
op

ul
at

io
n

alpha(2) = 0.000200 delta(2) = 0.800000

NMM: Integration of ODEs page 57

Example: Second Order Mechanical System

m

F(t)

x
k c

X
F = ma

Forces acting on the mass are

Fspring = −kx

Fdamper = −cẋ

F (t) − kx − cẋ = mẍ

NMM: Integration of ODEs page 58

Second Order Mechanical System

Governing equation is a second order ODE

ẍ + 2ζωnẋ + ω
2
nx =

F

m

ζ ≡ c

2
√

km

ωn ≡
q

k/m

ζ and ωn are the only (dimensionless) parameters

NMM: Integration of ODEs page 59

Equivalent Coupled First Order Systems

Define

y1 ≡ x y2 ≡ ẋ

then

dy1

dt
= ẋ = y2

dy2

dt
= ẍ

=
F

m
− 2ζωnẋ − ω

2
nx

=
F

m
− 2ζωny2 − ω

2
ny1

NMM: Integration of ODEs page 60

Solve Second Order System with ODE45

function demoSmd(zeta,omegan,tstop)
% demoSmd Second order system of ODEs for a spring-mass-damper system
%
% Synopsis: smdsys(zeta,omegan,tstop)
%
% Input: zeta = (optional) damping ratio; Default: zeta = 0.1
% omegan = (optional) natural frequency; Default: omegan = 35
% tstop = (optional) stopping time; Default: tstop = 1.5
%
% Output: plot of displacement and velocity versus time

if nargin<1, zeta = 0.1; end
if nargin<2, omegan = 35; end
if nargin<3, tstop = 1.5; end

y0 = [0; 0]; a0 = 9.8; % Initial conditions and one g force/mass
[t,y] = ode45(’rhssmd’,tstop,y0,[],zeta,omegan,a0);

subplot(2,1,1);
plot(t,y(:,1)); ylabel(’Displacement’); grid;
title(sprintf(’zeta = %5.3f omegan = %5.1f’,zeta,omegan));
subplot(2,1,2);
plot(t,y(:,2)); xlabel(’Time (s)’); ylabel(’Velocity’); grid;

NMM: Integration of ODEs page 61

Solve Second Order System with ODE45

function dydt = rhsSmd(t,y,flag,zeta,omegan,a0)
% rhsSmd Right-hand sides of coupled ODEs for a spring-mass-damper system
%
% Synopis: dydt = rhsSmd(t,y,flag,zeta,omegan,a0)
%
% Input: t = time, the independent variable
% y = vector (length 2) of dependent variables
% y(1) = displacement and y(2) = velocity
% flag = dummy argument for compatibility with ode45
% zeta = damping ratio (dimensionless)
% omegan = natural frequency (rad/s)
% a0 = input force per unit mass
%
% Output: dydt = column vector of dy(i)/dt values

if t<=0, fonm = 0.0;
else, fonm = a0; % Force/mass (acceleration)
end

dydt = [y(2); fonm - 2*zeta*omegan*y(2) - omegan*omegan*y(1)];

NMM: Integration of ODEs page 62

Response of Second Order System to a Step Input

0 0.5 1 1.5
0

0.005

0.01

0.015

D
is

pl
ac

em
en

t

zeta = 0.100 omegan = 35.0

0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6

time (seconds)

V
el

oc
ity

NMM: Integration of ODEs page 63

General Procedure for Higher Order ODEs

Given

dnu

dtn
= f(t, u)

The transformation is

Define yi ODE for yi

y1 = u
dy1

dt
= y2

y2 =
du

dt

dy2

dt
= y3

y3 =
d2u

dt2

dy3

dt
= y4

... ...

yn =
dn−1u

dtn−1

dyn

dt
= f(t, u)

NMM: Integration of ODEs page 64

